Graphics & Visualization

Chapter 2

Rasterization Algorithms

Graphics & Visualization: Principles & Algorithms

Rasterization

2D display devices consist of discrete grid of pixels

Rasterization: converting 2D primitives into a discrete pixel
representation

The complexity of rasterization is O(Pp), where P is the number
of primitives and p is the number of pixels

There are 2 main ways of viewing the grid of pixels:
= Half — Integer Centers
= Integer Centers (shall be used)

Connectedness: which are the neighbors of a pixel?
= 4 — connectedness
= 8 — connectedness

Challenges in designing a rasterization algorithm:
= Determine the pixels that accuracy describe the primitive
= Efficiency

Graphics & Visualization: Principles & Algorithms Chapter 2

Rasterization (2)

Integer Centers

Half — Integer Centers
4

S = N W

0O 1 2 3 4

4 — Connectedness

Graphics & Visualization: Principles & Algorithms

0 1 2 3

8 - Connectedness

Chapter 2

Mathematical Curves

« Two mathematical forms:
= Implicit Form:

€9 <0, 1mplies point(x,y) Is 'Inside’ the curve

f(x,y) =0, Implies point(x,y) Is on the curve
>0, 1mplies point(x,y) Is 'outside’ the curve

= Parametric Form:
= Function of a parameter t & [0, 1]
= t corresponds to arc length along the curve
= The curve istraced as t goes from0Oto 1

e.g.: I(t) = (x(1), y(1))

Graphics & Visualization: Principles & Algorithms Chapter 2

Mathematical Curves (2)

« Examples:
= Implicit Form:

= line:l(x,y)=ax+by+c=0
where a, b, ¢ : line coefficients
If 1(x, y) = 0 then point (X, y) is on the curve
else if I(x,y) <0 then point (X, y) Is on one half-plane
else if 1(x, y) >0 then point (X, y) iIs on the other half-plane
= circle:c(x,y) =(x—x.)° +(y—Vy.)> —r*=0
where (X, Y.) : the center of the circle & r: circle’s radius
If c(X,y) =0 then point (X, y) is on the circle
else if c(X, y) <0 then point (X, y) is inside the circle
else if c(x, y) > 0 then point (X, y) Is outside the circle

Graphics & Visualization: Principles & Algorithms Chapter 2

Mathematical Curves (3)

« Examples:
=Parametric Form:
= [ine: I(t) = (x(t), y(t))
where X(t) = X; + t (X,- X;) ,

y(©) =y, +t(y, Y1)
t & [0,1]
= circle: c(t) = (x(1), y(t)
where X(t) = X, + r cos(2xt) ,

y(t) =y, +r sin(2nt),
t & [0,1]

Graphics & Visualization: Principles & Algorithms Chapter 2

Finite Differences

 Functions that define primitives need to be evaluated on the
pixel grid for each pixel = wasteful

 Cut this cost by taking advantage of finite differences
« Forward differences (fd):
o First (fd) : of =1 —f
o Second (fd): o°f =of , —of
« kth (fd): kg _ gk1g _ sk-lg
 Implicit functions can5be]:JISEdfO deEfclie ifé;he gixel belongs to
the primitive
e.g.: pixel(x, y) is included if |f(x, y)|<e,
where e: related to the line width

Graphics & Visualization: Principles & Algorithms Chapter 2

Finite Differences (2)

» Examples:
= Evaluation of the line function incrementally:
—from pixel (X, y) to pixel (x+1,y)
Calculation of the forward differences of the implicit line equation
in the x direction from pixel x to pixel x+1:
5%) =I(x+Ly)-l(x,y)=a
Compute [(x,y)+6,1(x,y)=1(x,y) +a
—from pixel (x, y) to pixel (x+1,y)
Calculation of the forward differences of the implicit line equation
in the y direction from pixel y to pixel y+1.:
S 1(%,y) =1(Xx,y+1)—I(X,y) =Db
Compute 1(X,y) +06,I(X, y) =1(x,y)+b

Graphics & Visualization: Principles & Algorithms Chapter 2

Finite Differences (3)

» Examples:
= Evaluation of the circle function incrementally:
—from pixel (X, y) to pixel (x+1,y)
Calculation of the forward differences of the implicit circle equation.
Since it has degree 2 there are two forward differences in the x
direction from pixel x to pixel x+1.:
6,c(X,y)=c(x+1y)—c(x,y)=2(x—x.)+1

57c(X, y) = 6,0(x+1y) —6,6(x, y) =2

Compute 6,C(X, y) = 8,c(x—1,y)+&;c(X, y)
c(X+1y)=c(xy)+6c(xY)

—from pixel (x, y) to pixel (x, y+1): similar by adding &,c(x, y) and &c(x, y)

Graphics & Visualization: Principles & Algorithms Chapter 2 9

L_Iine Rasterization

» Desired qualities of a line rasterization algorithm:
= Selection of the nearest pixels to the mathematical path of the line
= Constant line width, independent of the slope of the line
= NoO gaps
= High efficiency

e @ |
oSO
@ o " _p.
___________ A
@ //// E .
® | O

The 8 octants with an example line in the first octant

Graphics & Visualization: Principles & Algorithms Chapter 2

10

Line Rasterization Algorithm 1

« Draw a line from pixel p, = (X, y) to pixel p, = (X, ¥,) in the first octant

V.-V

[

« Slopeoftheline: s=——"+_ y=1y +round(s-(x- x)), x=x X

FroooaY g
X, - X

Algorithm:

linel (int xs, int ys, int xe, int ye, colour c¢) {
float s; int x, y;
s = (ye —ys) / (xe —xs); (x, y) = (xs, ys);
while (x <= xe) {
setpixel (x, vy, c);
X = x + 1;

y = ys + round(s * (x — xs)):

)

Graphics & Visualization: Principles & Algorithms Chapter 2

11

Line Rasterization Algorithm 1 (2)

« Using linel algorithm in the first and second octants:

a

Graphics & Visualization: Principles & Algorithms Chapter 2

12

Line Rasterization Algorithm 2

 Avoid rounding operation by splitting y value into an integer and a float part e
« Compute its value incrementally
Algorithm:

line2 (int xs, int ys, int xe, int ye, colour ¢) {
float s, e; 1int x, y;
e = 0; s = (ye —ys) / (xe = xs); (x, y) = (xs, ys);
while (x <= xe) {
/* assert —1/2 <= e < 1/2 %/
setpixel (x, vy, c¢);

x =x t+ 1;

e = e t s;

if (e > 1/2) {
y =y + 1;
e = e — I;

}

J

Graphics & Visualization: Principles & Algorithms Chapter 1 13

Line Rasterization Algorithm 2 (2)

 Algorithm 1ine2 resembles the leap year calculation

» The slope is added to the e variable at each iteration until it
makes up more than half a unit & then the line leaps up by 1.

* The integer y variable is incremented and e is correspondingly
reduced, so that the sum of the 2 variables is unchanged.

« Similarly, the year has approximately 365,25 days but
calendars are designed with an integer number of days.

« We add a day every 4 years to make up for the error being
accumulated.

Graphics & Visualization: Principles & Algorithms Chapter 1 14

Bresenham Line Algorithm

Replace the floating point variables in 1ine2 by integers
Multiplying the leap decision variables by dx = x, — X, makes s
and e integers

The leap decision becomes e > | 9X

2

because e Is integer

ld—zx‘ can be computed by a numerical shift

.. dx .
For more efficiency replace the test e > 7‘ by € > 0 using

an initial subtraction of [d—;‘ from e

Graphics & Visualization: Principles & Algorithms Chapter 2

Bresenham Line Algorithm (2)

 Floating point variables are replaced by integers
Algorithm

line3 (int xs, int ys, int xe, int ye, colour c) {
int x, vy, e, dx, dy;
e =— (dx >> 1); dx = (xe - xs); dy=(ye — ys); (x, y)=(xs, ys);
while (x <= xe) {
/* assert —dx <= e < 0 */
setpixel (x, vy, ¢);
X =x *t 1;
e = e *+ dy;
if (e >=0) {
y =yt 1;
e = e — dx;

J

Graphics & Visualization: Principles & Algorithms Chapter 2 16

Bresenham Line Algorithm (3)

« Suitable for lines in the first octant
 Changes for other octants according to the following table

Octant | Major Axis | Minor Axis Variable
1 X Increasing
2 v Increasing
3 v decreasing
4 X Increasing
5 X decreasing
6 v decreasing
7 v Increasing
5 X decreasing

» Meets the requirements of a good line rasterization algorithm

Graphics & Visualization: Principles & Algorithms Chapter 2

Circle Rasterization

» Circles possess 8—way symmetry
« Compute the pixels of one octant
 Pixels of other octants are derived using the symmetry

(-X,y) .
(-y,X)

(o3, =R

(%,)

Graphics & Visualization: Principles & Algorithms Chapter 2

Circle Rasterization Algorithm

 The following algorithm exploits 8—way symmetry
Algorithm:

set8pixels (int x, y, colour ¢) {

setpixel (x, vy, c);

setpixel (v, x, c);

setpixel (y, -x, c);
setpixel (x, -y, c);
setpixel (-x, -y, c¢):
setpixel (-y, —-x, c¢):
setpixel (-y, x, c):
setpixel (-x, vy, c¢):

Graphics & Visualization: Principles & Algorithms Chapter 2

Bresenham Circle Algorithm

« The radius of the circleis r

« The center of the circle is pixel (0, 1)

» The algorithm starts with pixel (0, r)

It draws a circular arc in the second octant
« Coordinate x Is incremented at every step

 |If the value of the circle function becomes non-negative (pixel
not inside the circle), y is decremented

Graphics & Visualization: Principles & Algorithms Chapter 2

Bresenham Circle Algorithm (2)

 To center the selected pixels on the circle use a circle function
which is displaced by half a pixel upwards; the circle center
becomes (0, 12) 1
c(x,y)=x° +(y—E)2 —r*=0
* Initialize the error variable tol: .
c(0,r) = (r—z)2 —r? :Z—r
 Since error is an integer variable the ¥4 can be dropped
* e keeps the value of the implicit circle function

« For the incremental evaluation of e use the finite differences of
that function for the 2 possible steps of the algorithm

c(x+1y)—c(x,y) = (x+1)*—x*> =2x+1
c(x, y—1) —c(x, y)=<y—§)2—<y—§)2 — 2y+2

Graphics & Visualization: Principles & Algorithms Chapter 2 21

Bresenham Circle Algorithm (3)

Algorithm:

circle (int r, colour ¢) {
int x, y, e;
x = 0; y = T; e = — T;
while (x <=y) {
/% assert e = x 2 + (y - 1/2) 2 — v 2 %/
set8pixels(x, vy, c¢);
e =e t+ 2% x + I;

X =x + 1;
if (e >=0) {
e =e - 2%y + 2;
y =y - L
J

}

Graphics & Visualization: Principles & Algorithms Chapter 2

22

Point in Polygon Tests

 Polygon: } n vertices (v, ..., v,.1) | form a closed curve
n edges Vg, Vi, +.s Vg, Vo

« Jordan Curve Theorem: A continuous simple closed curve in
the plane separates the plane into 2 regions. The ‘inside’ and the
‘outside’

 For efficient rasterization we need to know if a pixel p is inside a
polygon P. There are two types of inclusion tests:

« Parity test
= Winding number

Graphics & Visualization: Principles & Algorithms Chapter 2 23

Point in Polygon Tests (2)

 Parity Test:
= Draw a half line from pixel p in any direction
= Count the number of intersections of the line with the polygon P
= |If #intersections == odd number then p is inside P
= Otherwise p is outside P

Graphics & Visualization: Principles & Algorithms Chapter 2

24

Point in Polygon Tests (3)

« Winding Number Test:
= o(P, p) counts the # of revolutions completed by a ray from p that traces P

w(P.p) = [y

For every counterclockwise revolution o(P, p) ++
For every clockwise revolution o(P, p)--

If (P, p) is odd then p is inside P

Otherwise p is outside P

— L

Graphics & Visualization: Principles & Algorithms Chapter 2 25

Point in Polygon Tests (4)

» The winding number test for point in polygon:

« Simple computation of the winding number:

S S

 The sign test for point in convex polygon:

sign(l,(p)) = sign(l,(p)) = ... = sign(l,,(P))

Graphics & Visualization: Principles & Algorithms Chapter 2

26

Polygon Rasterization

 Basic Polygon Rasterization Algorithm:
= Based on the parity test

« Steps:

1. Compute intersections I(X, y) of every edge with all the scanlines it intersects & store
them in a list

2. Sort the intersections by (y, X)
3. Extract spans from the list & set the pixels between them

Graphics & Visualization: Principles & Algorithms Chapter 2

27

Singularities

 Basic Polygon Rasterization Algorithm:
= Inefficient due to the cost of intersection computations

 Problem:
« If apolygon vertex falls exactly on a scanline:
count 2, 1 or O intersections ?

e Solutions:

= regard edge as closed on the vertex with min y and open on
the vertex with max y

= Ignore horizontal edges

Graphics & Visualization: Principles & Algorithms Chapter 2

28

Singularities (2)

 Rule for Treating Intersection Singularities

-
NS
/ ZON

e

« Effect of Singularities Rule on Singularities

scanline

2\/°/\> M? \N/

Graphics & Visualization: Principles & Algorithms Chapter 2

29

Scanline Polygon Rasterization Algorithm

Takes advantage of scanline coherence & edge coherence
Uses an Edge Table (ET) and an Active Edge Table (AET)

Algorithm:

1.

Graphics & Visualization: Principles & Algorithms Chapter 2

Construct the polygon ET, containing the maximum y, the min x
and the inverse slope of each edge (y,., Xun. 1/s). The

record of an edge 1s inserted in the bucket of its minimum y
coordinate.

For every scanline y that intersects the polygon in an upward
sweep

(a)Update the AET edge intersections for the current scanline:
x = x + 1/s.

(b) Insert edges from y bucket of ET into AET.

(c)Remove edges from AET whose y . < .

(d)Re—sort AET on x.

(e)Extract spans from the AET and set their pixels.

30

Scanline Polygon Rasterization Algorithm (2)

« A polygon and its Edge Table (ET)

8
YA 7
6
ar v 5 ViVs
S I : 4 [~[8[4 1/
z 5F 3 | +——[81[2][3/5
V.V
8 41 Vv, 2 03
@ 3:"0 1 . AA WAL
1_||||Vl|||| 0 ._—>|3|5|_1| _|—>|4|5|-1/4| * |
« Example states of the AET
VoVs V,V;3

y=4 ———[8 [13/5] 35 —F+——[8 [[41[1/4] - |

VoV V1V,

yv=3 ———[8 [I121 [3/5] —F+——[4 [17/4]-1/4] - |
V1V, ViV,

y=2 —4+—— 3 T3] [-1 [—+——[4 [19721[-1/4 | -]

AET Ymarx x A4/4,

Graphics & Visualization: Principles & Algorithms Chapter 2 31

Scanline Polygon Rasterization Algorithm (3)

« The edges that populate the AET change at polygon vertices
according to the following figure:

A

=

8

=

5 \ / / line
scan

3= V

 /\

Q

D]

7

remove insert replace

Updating the AET

Graphics & Visualization: Principles & Algorithms Chapter 2 32

Critical points Polygon Rasterization Algorithm

 Uses the local minima (critical points) explicitly in order to
make ET redundant and to avoid its expensive creation

« An example polygon (above) and the contents of the AET for 3

scanlines (below)
7 2
54\\’% L
X /N6 > y=H,

11(X NSX Xg

AN ATy

y= 3| 6 |-1|x9|_’| 6 |+1|x10|_’| 8 | -llxu |—’| 3 |+1|x12|_’| 3 |-1 |x13|_’| 1 |+1|x14‘

Y=H{UL[-1[% =1 9 [+1] X —{ 9 [-1 [X, [={ 1 [+1]% |

y=H|[12] -1[%, |—{13[+1] X, |—{15]-1 | X, F—={15]+1] %, |

Graphics & Visualization: Principles & Algorithms Chapter 2 33

Critical points Polygon Rasterization Algorithm

Algorithm:
. Find and store the critical points of the polygon.

2. For every scanline y that intersects the polygon in an upward sweep

(a)For every critical point c(c, ¢,/ | (y-1 < ¢, < y) track the perimeter
of the polygon in both directions starting at c¢. Tracking stops if
scanline y 1is intersected or a local maximum is found. For every
intersection with scanline y create an AET record (v, #+1, x)
containing the start vertex number v of the intersecting edge, the
tracking direction along the perimeter of the polygon (-1 or +1
depending on whether it is clockwise or counterclockwise) and the x
coordinate of the point of intersection.

(b)For every AET record that pre—existed step (a), track the polygon
perimeter in the direction stored within it. If an intersection with
scanline y 1is found, the record’ s start vertex number and
intersection x coordinate are updated. If a local maximum is found
the record is deleted from the AET.

(c) Sort the AET on x if necessary.
(d) Extract spans from the AE7 and set their pixels.

Graphics & Visualization: Principles & Algorithms Chapter 2 34

Triangle Rasterization Algorithm

Graphics & Visualization: Principles & Algorithms Chapter 2

Triangle: simplest, planar, convex polygon

Determine the pixels covered by a triangle = perform an inside
test on all the pixels of the triangle’s bounding box

The 1nside test can be the evaluation of the 3 line functions
defined by the triangle edges

For each pixel p of the bounding box, if the 3 line functions give
the same sign, then p is inside the triangle, otherwise outside

For efficiency, the line functions are incrementally evaluated
using their forward differences

35

Triangle Rasterization Algorithm (2)

Algorithm:

trianglel (vertex v0, vl, v2, colour c) {

line 10, 11, 12;

float e0, el, e2, e0t, elt, e2t;

/% Compute the line coefficients (a,b,c) from the vertices */
mkline (w0, v1, &10): mkline(vl, v2, &11): mkline(v2, v0, &l12):
/* Compute bounding box of triangle */

bb xmin = min(v0.x, vl.x, v2.X);

bb xmax = max (v0.x, vl.x, v2.X);

bb ymin = min(v0.vy, vl.y, v2.vy);:

bb ymax = max (v0.y, vl.y, v2.vy);:

/* Evaluate linear functions at (bb xmin, bb ymin) */

e0 = 10.a * bb xmin + 10.b * bb ymin + 10.c;

el = 11.a * bb xmin + 11.b * bb ymin + 11.c;

e2 = 12.a * bb xmin + 12.b * bb ymin + 12.c;

Graphics & Visualization: Principles & Algorithms Chapter 2 36

Triangle Rasterization Algorithm (3)

Algorithm (continued):

for (y=bb ymin; y<=bb ymax; y++) {

e0t = e0; elt = el; e2t = e2;

for (x=bb xmin; x<=bb xmax; x++) {
if (sign(e0)==sign(el)==sign(e2))

setpixel (x,v, c):

e0 = e0 + 10. a;
el = el + 11.a;
e2 = e2 + 12. a;

e0 = e0t + 10.b;

el = elt + 11.b;
e2 = e2t + 12.b;

Graphics & Visualization: Principles & Algorithms Chapter 2

37

Triangle Rasterization Algorithm (4)

 If the bounding box is large, trianglel is wasteful

« Another approach: Edge Walking

= 3 Bresenham line rasterization algorithms are used to walk the edges of
the triangle

= Trace is done per scanline by synchronizing the line rasterizers

= The endpoints of a span of inside pixels are computed for every scanline
that intersects the triangle and the pixels of the span are set

= Special attention to special cases

« Simplicity of the above algorithms makes them ideal for
hardware implementation

Graphics & Visualization: Principles & Algorithms Chapter 2 38

Area Filling Algorithms

« A simple approach is flood fill
Algorithm:
flood fill (polygon P, colour c) {

point s;

draw perimeter (P, ¢);

s = get seed point (P);
flood fill recur (s, ¢);
}

flood fill recur (point (x,y), colour fill colour); {

colour c;

c = getpixel (x,y); /% read current pixel colour */

if (¢ != fill colour) f{
setpixel (x,y,fill colour):
flood fill recur((x+1,y), fill colour); flood fill recur((x—1,y), fill colour);
flood fill recur ((x,y+1), fill colour); flood fill recur((x,y-1), fill colour);:
}

Graphics & Visualization: Principles & Algorithms Chapter 2 39

Area Filling Algorithms (2)

« For 4 — connected areas the above 4 recursive calls are sufficient
« For 8 — connected areas 4 extra recursive calls must be added
« flood fill recur ((x+1, y+1),
« flood fill recur ((x+1,y-1),
« flood fill recur((x-1, y+1),
« flood fill recur((x-1,y-1),

 Basic problem its innefficiency

Graphics & Visualization: Principles & Algorithms

Chapter 2

fill colour);
fill colour);
fill colour);
fill colour);

40

Perspective Correction

Graphics & Visualization: Principles & Algorithms Chapter 2

The rasterization of primitives is performed in 2D screen space
while the properties of primitives are associated with 3D object
vertices

The general projection transformation does not preserve ratios of
distances - it Is incorrect to linearly interpolate the values of
properties in screen space

Perspective Correction used to obtain the correct value at a
projected point

Based on the fact that projective transformations preserve cross
ratios

41

Perspective Correction (2)

« Example:
= Let ad be a line segment and b its midpoint in 3D space
« Leta’, d’, b’ be the perspective projections of the pointsa, d, b

—_

ac a'c .

cd _ c'd’ . @
ab a'b’ ac _ac , -

T SEPYRY, y Profective -,

bd b d Cd CIC d Mapping '

ab a’b’ . .

— =1 =(r

bd ’ b’d’ _

» Heckbert provides an efficient solution to perspective
correction:
= Perspective division of a property:

o Let [X, Y, z, w, c]" be the pre-perspective coordinates of a vertex,
where ¢ is the value of a property = [x/w, y/w, z/w, c/w, 1/w]" are
the coordinates of the projected vertex

Graphics & Visualization: Principles & Algorithms Chapter 2 42

Spatial Anti-aliasing

« The primitive rasterization algorithms represent the pixel as a point

 Pixels are not mathematical points but have a small area — aliasing
effects

 Aliasing effects:
= Jagged appearance of object silhouettes
= Improperly rasterized small objects
= Incorrectly rasterized detail

Graphics & Visualization: Principles & Algorithms Chapter 2 43

Anti-aliasing Techniques

 Anti-aliasing trades intensity resolution to gain spatial resolution

2 categories of anti-aliasing techniques:
* Pre-filtering:

« extract high frequencies before sampling

= treat the pixel as a finite area

= compute the % contribution of each primitive in the pixel area
 Post-filtering:

= extract high frequencies after sampling

= Increase sampling frequency

= results are averaged down

Graphics & Visualization: Principles & Algorithms Chapter 2 a4

Pre-filtering Anti-aliasing Methods

Anti-aliased Polygon Rasterization: Catmull’s Algorithm
 Consider each pixel as a square window

 Clip all overlapping polygons

» Estimate the visible area of each polygon as a % of the pixel

/
A general polygon clipping algorithm is needed, such as Greiner-
Horman (section 1.8.3)

N

Graphics & Visualization: Principles & Algorithms Chapter 2

45

Catmull’s Algorithm

Algorithm:
1. Clip all polygons against the pixel window -

P,...P _; : the surviving polygon pieces
2. Eliminate hidden surfaces:
(a) order by depth polygons P,...P

(b)clip against the area formed by subtracting the polygons
from the (remaining) pixel window in depth order —
Po...P, (m < n) the visible parts of polygons &

Ay .. A _, their respective areas
3. Compute final pixel color: A,C, + AC, +...+ A _C_; + A,
where C,: the color of polygon I &

1

Ay, Cy: background area & its color

 Not practically viable:
= Extraordinary computations

= A polygon may not have constant color in a pixel (texture)

Graphics & Visualization: Principles & Algorithms Chapter 2 46

Pre-filtering Anti-aliasing Methods (2)

Anti-aliased Line Rasterization

» Bresenham algorithm

= Uuses binary decision to select the closest pixel to the mathematical path of
the lines — jagged lines & polygon edges

 Lines must have certain width = modeled as thin parallelograms

= binary decision is wrong
= color value depends on the % of the pixel that is covered by the line

Graphics & Visualization: Principles & Algorithms Chapter 2 at

Anti-aliased Line Rasterization

* An example:

/

 Line in the 15 octant with slope s= —%
2 pixels partially covered by the line
 Determine the portions of the triangles A; & A,

 Color of the top pixel = color of line at a portion A,
 Color of the bottom pixel = color of line at a portion (1-A,)
2
» The areas of the triangles: A = d_ A = (s—d)°
28 25

Graphics & Visualization: Principles & Algorithms Chapter 2 48

Post-filtering Anti-aliasing Methods

More than 1 sample per pixel — image at a higher resolution
The results are averaged down to the resolution of the pixel grid
Most common technigue due to its simplicity

An example:
= to create an 1024 x 1024 image, take 3072 x 3072 samples
+ 9 samples per pixel (3 horizontally x 3 vertically)
= 3 x 3virtual image pixels correspond to 1 final image pixel
= the final pixel’s color is the average of the 9 samples

Virtual Image Final Image

Graphics & Visualization: Principles & Algorithms Chapter 2 49

Post-filtering Algorithm

Algorithm:

I. The (continuous) image is sampled at s times the final pixel
resolution (s horizontally X s vertically) creating a virtual

image I,.
2. The wvirtual 1image 1is low—pass filtered to eliminate the
high frequencies that cause aliasing.

3. The filtered virtual 1image 1is re—-sampled at the pixel
resolution to produce the final image I;

« Use sxs convolution filter h instead of averaging the sxs samples
o Steps:
= Place the filter over the virtual image pixesl_1 »

« Compute the final image value: I, (i, j)=>" > "1,(i*s+p, j*s+q)-h(p,q)
= Move the filter p=0 =0

Graphics & Visualization: Principles & Algorithms Chapter 2 50

Post-filtering Algorithm (2)

« Examples of convolution filters:

1 2 3 4 3 2 1

2 4 6 8 6 4 2

1 2 3 2 1 3 6 9129 6 3

2 4 6 4 2 4 8 1216 12 8 4

1 2 1 36 9 6 3 36 9129 6 3
2 4 2 2 4 6 4 2 2 4 6 8 6 4 2
1 2 1 1 2 3 2 1 1 2 3 4 3 2 1

3x3 5x5 7x7

« To avoid color shifts, normalize:
s—1

S Y h(p.g)=1

p=0 ¢g=0
» The larger the s is — better results

« Drawbacks:
= Ts— Timage generation time & T memory required
= no matter how big s becomes, the aliasing problem will remain
= not sensitive to image complexity — a lot of wasted computations

Graphics & Visualization: Principles & Algorithms Chapter 2 51

More Post-filtering Algorithms

« Adaptive post-filtering:
= Increases the sampling rate where high frequencies exist
= More complex algorithm

 Stochastic post-filtering:

= Samples the continuous image at non-uniformly spaced positions
= Aliasing effects are converted to noise (human eye ignores them)

. /pixel\ 3 .

Regular Stochastic

Graphics & Visualization: Principles & Algorithms Chapter 2 52

2D Clipping Algorithms

« Avoid giving out-of-range values to a display device

» Clipping object (window): display device usually modeled as
rectangular parallelogram which defines the within-range values

» Subject: primitive of a modeled scene

 Generalization from 2D to 3D is relatively straightforward

 Subject relation to the clipping object
= Subject entirely inside: rasterize it
= Subject outside: do not rasterize

= Subject intersects the clipping object: compute the intersection with a 2D
clipping algorithm & rasterize the result

Graphics & Visualization: Principles & Algorithms Chapter 2 53

Point Clipping

 Point clipping is a trivial case:
= IS point (X, y) inside the clipping object ?
* |If the clipping object is a rectangular parallelogram:
= EXxploit its opposite vertices (Xiin, Yimin)y Kimaxr Ymax)
* Inclusion Test:
1T Xpin S X< X & Yiin SY = Vi
Then the point is entirely inside and must be rasterized
Else the point is entirely outside and must NOT be rasterized

Graphics & Visualization: Principles & Algorithms Chapter 2 54

Line Clipping - CS Algorithm

Cohen — Sutherland (CS) Algorithm

 Perform a low-cost test which decides if a line segment Is
entirely inside or entirely outside the clipping window

 For each non-trivial line segment compute its intersection with
one of the lines defined by the window boundary

 Recursively apply the algorithm to both resultant line segments

Graphics & Visualization: Principles & Algorithms Chapter 2

55

Line Clipping - CS Algorithm (2)

» The plane of the clipping window is divided into 9 regions
« Each region is assigned a 4 — bit binary code

» The code bits are set according to the following rules:

« FirstBit: Setlfory>y, .., elseset0

= Second Bit: Set1 fory <y, elseset0
= Third Bit: Set 1 for x > x,.,, else set 0
« Fourth Bit: Set 1 for x < x.,;.,, else set 0

1000 ' 1000 ' 1010

Vmay - — e — .
0001 0000 0010
y <4— Clipping window
0101 : 0100 1 0110
xmin xmax

Graphics & Visualization: Principles & Algorithms Chapter 2

Line Clipping - CS Algorithm (3)

* Let the 4 — bit codes of the endpoints of a line segment be c,, C,

 Each endpoint is assigned a 4 — bit code according to the above
rules

e Then the low-cost inclusion tests are:
= IT clvc2=0000
Then the line segment is entirely inside

« If clACc2=0000
Then the line segment is entirely outside

Graphics & Visualization: Principles & Algorithms Chapter 2

57

Line Clipping - CS Algorithm (4)

« Example:
Endpoint | Code | Endpomt | Code
a 0001 2 0100
b 0101 f 0010
c 0000 o 0001
d 0000 h 1010

 ab is entirely outside since 0001/\0101 #0000
« cd is entirely inside since 0000 \/0000 = 0000
« For ef & gh the extent tests are not conclusive = compute the intersection

points

« Intersect ef with line y = y,... since the 2" bit of the code is differentat e & f
 Continue with the if line segment as the 2" bit of the code of the f vertex has

value 0O (inside)

« For gh compute one of the intersection points k & continue with gk which
then computes the intersection j & recurses with a trivial inside decision for

14

Graphics & Visualization: Principles & Algorithms

Chapter 2

Line Clipping - CS Algorithm (5)

Algorithm:
CS Clip (vertex pl, p2, float xmin, xmax, ymin, ymax) f{
int c¢l, c2; vertex 1; edge e;

cl = mkcode (pl): c2 = mkcode (p2);:
if ((cl | ¢2) == 0)
/* plp2 is inside */
else if ((cl & c2) !'=0)
/* plp2 is outside */
else {
e= /* window line with (cl bit != c2 bit) %/
i = intersect lines (e, (pl,p2)):
if outside (e, pl)
CS Clip(i, p2, xmin, xmax, ymin, ymax):
else

CS Clip(pl, i, xmin, xmax, ymin, ymax):

)

Graphics & Visualization: Principles & Algorithms Chapter 2

59

Line Clipping - Skala Algorithm

Skala Algorithm:

 Galin in efficiency over CS algorithm by classifying the vertices
of the clipping window relative to the line segment being clipped

« A binary code c; is assigned to each clipping window vertex
V; = (X;, ;) as follows:

. 1,1(x,y)=0
e C = {

0, otherwise
where I(x, y) Is the function defined by the line segment to
be clipped
c; indicates the side of the line segment that vertex v; lies in

Graphics & Visualization: Principles & Algorithms Chapter 2 60

Line Clipping - Skala Algorithm (2)

» The codes are computed by taking the vertices in a consistent
order around the clipping window (e.g. counterclockwise)

« A clipping window edge is intersected by the line segment for
every change in the coding of the vertices (from 0 to 1 or from 1
to 0)

« A pre - computed table directly gives the clipping window edges
Intersected by the line segment from the code vector [c, ,c; ,C, ,C4]
and this replaces the recursive case of the CS algorithm

Graphics & Visualization: Principles & Algorithms Chapter 2 61

Line Clipping — LB Algorithm

Liang — Barsky (LB) Algorithm
 Solves the line clipping problem without using recursive calls
« Compared to CS algorithm, LB is more than 30% more efficient
» Can be easily extended to a 3D clipping object
* LB is based on the parametric equation of the line segment to be
clipped from p,(Xy, Y;) t0 Po(Xy, ¥5):
P=p,+t(p,-py), te 0 1]

or
X=X, +tAX, y=y, +tAy
where
AX= X=X LAY = Y,- Y

Graphics & Visualization: Principles & Algorithms Chapter 2 62

Line Clipping — LB Algorithm (2)

» For the part of the line segment that is inside the clipping
window:

Xmin < Xl + 1 AXS Xmax 1

ymin = yl +1 Ay =< ymax

or
-t AX < X1 = Xiin
tAX < X — X1
-t Ay = Y1~ Ymin
LAY < Y — Y1

Graphics & Visualization: Principles & Algorithms Chapter 2 63

Line Clipping — LB Algorithm (3)

» The above inequalities have the common form:

tp; =G,

where
plz'AX’qlle'Xmin
p2: AX’qZ:Xmax_Xl

Ps=-AY, U3 =Y1 = Ymin

p4: Ay1q4:ymax_y1

Graphics & Visualization: Principles & Algorithms

i pz” i D:
f 4 /
ymax - == — e ———————————————— — — — — —
pf/////’ p. p
/ 2
P, — |
1 2
ymin —_—_ - - = = 3 ______
outside - inside |
half-plane . naifplane
forline1 | forline1
Chapter 2

64

Line Clipping — LB Algorithm (4)

 Notice the following:

= If p; = 0 the line segment is parallel to the window edge 1 and
the clipping problem is trivial

= If p; # 0 the parametric value of the point of intersection of
the line segment with the line defined by window edge I Is

t,=0q;/p

= If p; <0 the directed line segment is incoming with respect to
window edge |

= If p; > 0 the directed line segment is outgoing with respect to
window edge |

Graphics & Visualization: Principles & Algorithms Chapter 2 65

Line Clipping — LB Algorithm (5)
 Therefore t;, and t, can be computed as:

t —max({ | p, <0, i:1..43U{0}) —mln({ | p. >0, i:1.4}U{l})

 Sets {0}, {1} clamp the starting and endlng parametric values at
the end points of the line segment

- If t, <t the values t;,and t, are plugged into parametric line
equation to get the actual starting — ending points of the clipped
segment

 Otherwise there is no intersection with the clipping window

1
P :

Graphics & Visualization: Principles & Algorithms Chapter 2

Line Clipping — LB Algorithm (6)

LB example: Y A
« Compute: Ax=25and Ay =25
- Compute: p,=-2.5,0,=-0.5

5

4 -

3F EPT3,3)
p,=2.5, 4,=3.5 HL
p,=-2.5,q,=-0.5 11

7
. Al T T T T B
p4:2.5’ q4:3.5. p1(0'5 30°5) 1 23435

. Compute: t, =max({ -, B3u{op =02, t,, = min({&,%}u{l}) 1

i Ps P,

- Since t,, < t,,, compute endpoints p,'(x"y,") P,'(X,"Y,") of the
clipped line segment using the parametric equation:
X=X+t Ax=05+02-25=1
y, =y, Tt Ay=05+02-25=1
X, =X+t ,Ax =05+1-25 =3

y, =y, +t Ay =05+1-25 =3

Graphics & Visualization: Principles & Algorithms Chapter 2

>
X

67

Polygon Clipping

 In 2D polygon clipping the subject and clipping object are both
polygons (subject polygon, clipping polygon)
» Why is polygon clipping important ?

\E
Subject
v, v polygon
\ L Vo A\

Clipping window
 Polygon clipping cannot be regarded as multiple line clipping

Graphics & Visualization: Principles & Algorithms Chapter 2 68

Polygon Clipping — SH Algorithm

Sutherland — Hodgman (SH) Algorithm:

 Clips an arbitrary subject polygon against a convex clipping polygon

« Has m pipeline stages which correspond to the m edges of the clipping

polygon
« Stagei]|1:0...m-1 clips the subject polygon against the line defined by edge |
of the clipping polygon

e The input to stage 1| i: 1...m-1 is the output of stage i-1

« Polygon is restricted to be convex
0\.

%)

Clipping %\?3\‘39’0(\

polygon 3

0

<\ <(—Stage 0 — \ <<—> Stage 1 — <

2 \ \ l
Stage 2
< «— [Stage 3 [— \ <
\ 69

Graphics & Visualization: Principles & Algorithms Chapter 2

Polygon Clipping — SH Algorithm (2)

» For each stage of the SH algorithm there are the following 4
relationships between a clipping line and an object polygon edge

Vka+1

inside | outside
R Vk+1
Vv, RS R
N Yo |y,
vf/'o Vi : :
Vi \A RS e
Clipping
Line
Case1: 1 output Case2: 1 output Case3: 0 outputs Case4: 2 outputs

e output vertex

Graphics & Visualization: Principles & Algorithms Chapter 2 70

Polygon Clipping — SH Algorithm (3)

« Example of the 15t stage of the SH algorithm:

Vk | Vk+1 | Case | Output
Vo V1 2 il

A Vo 3 -

Vo Vg 4 i2 V3
V3 V4 2 13

V4 Vs 3 -

Vs Vg 4 i4,Vg
Ve Vo 1 Vo

Graphics & Visualization: Principles & Algorithms

Vi

Clipping
line

Chapter 2 1

Polygon Clipping — SH Algorithm (4)

« Algorithm:
polygon SH Clip (polygon C, S) { /*C must be convexk/

int 1, m;
edge e;
polygon InPoly, OutPoly;
m = getedgenumber (C) :
InPoly = S;
for (i=0; i<m; i++) {
e = getedge(C, 1) ;
SH Clip Edge (e, InPoly, OutPoly) ;
InPoly = OutPoly
}

return OutPoly

Graphics & Visualization: Principles & Algorithms Chapter 2

72

Polygon Clipping — SH Algorithm (5)

« Algorithm:

SH Clip Edge (edge e, polygon InPoly, OutPoly) {
int k, n; vertex vk, vkplusl, 1;

n = getedgenumber (InPoly) ;
for (k=0; k<n; k++) {
vk = getvertex(InPoly, k) ; vkplusl=getvertex(InPoly, (k+1) mod n);
if (inside(e, vk) and inside(e, vkplusl))
/% Case 1 */
putvertex (OutPoly, vkplusl)
else if (inside(e, vk) and !inside(e, vkplusl)) {
/% Case 2 */
i = intersect lines(e, (vk, vkplusl)): putvertex (OutPoly, i)

}
else if (linside(e, vk) and !inside(e, vkplusl))
/% Case 3 */
else {
/% Case 4 */
i = intersect lines(e, (vk, vkplusl)); putvertex (OutPoly, i) :
putvertex (OutPoly, vkplusl)
}

}
}

Graphics & Visualization: Principles & Algorithms Chapter 2

73

Polygon Clipping — SH Algorithm (6)

» The complexity of SH algorithm is O(mn) where m and n are the
numbers of vertices of the clipping and subject polygons
respectively

* No complex data structures or operations are required so the SH
algorithm is quite efficient

« The SH algorithm is appropriate for hardware implementation
since the clipping polygon, in general, is constant

Graphics & Visualization: Principles & Algorithms Chapter 2 4

Polygon Clipping — GH Algorithm

Greiner — Hormann Algorithm

 Suitable for general clipping polygons (C) and subject polygons
(S)

 The polygons can be arbitrary closed polygons, even self
Intersecting

» The complexity of step 1 and 2 is O(mn) where m and n are the
numbers of vertices of the C and S polygon respectively

» The overall complexity of the GF algorithm is O(mn)

* In practice, the complex data structures used in GF algorithm
makes it less efficient than the SH algorithm

Graphics & Visualization: Principles & Algorithms Chapter 2 75

Polygon Clipping — GH Algorithm (2)

GH algorithm is based on the winding number test for point p in
polygon P, symbolically > w(P, p)

w(P, P) does not change so long as the topological relation of
the point p and the polygon P remains constant

If p crosses P the w(P, P) is incremented or decremented

If w(P, P) is odd then p is inside P, otherwise it is outside

Graphics & Visualization: Principles & Algorithms Chapter 2 76

Polygon Clipping — GH Algorithm (3)

* The 3 steps of the GH algorithm:

1. Trace the perimeter S starting from a vertex v, An
Imaginary stencil toggles between on and off state every
time the perimeter of C is crossed. Its initial state is on if
Vg, IS Inside C and off otherwise. It thus computes the part of
the perimeter of S that is inside C

2. As step 1 but reverse the roles of S and C. The part of the
perimeter of C that is inside S is thus computed

3. The union of the results of steps 1 and 2 is the result of
clipping S against C (or equivalently C against S)

Graphics & Visualization: Principles & Algorithms Chapter 2 "

Polygon Clipping — GH Algorithm (4)

» GH algorithm example:
(@) Theinitial S, C polygons .,

(b) After step 1 of GH |

(c) After step 2 of GH

(d) The final result >ﬁ

S
A
7. . I

// SN N
o 1
¢ RN
\ . o1
. ‘. 1
\\ :' S
. ..
N -,
B
.

.

B

B

B

.

i Ay R
\]
. 1
\ 1
AR
\

A C
N
Al

(¢)
Chapter 2

Graphics & Visualization: Principles & Algorithms

Polygon Clipping — GH Algorithm (5)

 GH algorithm computes the intersection of the areas of 2
polygons, C (]S

* It easily generalizes to compute CUS, C — S and S — C by
changing the initial states of the stencils for S and C

« Obviously there are 4 possible combinations of the initial state
» These generalizations are not useful for the clipping problem

Graphics & Visualization: Principles & Algorithms Chapter 2 9

