
1

Intersection Test for Collision Detection in Particle Systems

Evaggelia-Aggeliki Karabassi Georgios Papaioannou Theoharis Theoharis

Depatment of Informatics, University of Athens, Greece

Abstract. We present a method for detecting collisions between a system of spherical particles and an
environment composed of triangles. The proposed algorithm takes into account the particles’ volume
and is based on an intersection test between a triangle and a cylinder with spherical caps (the trajectory
of a particle). The algorithm also efficiently calculates a close estimate of the point of intersection,
which is necessary for collision detection.

1. Introduction

We describe a test for the intersection of a triangle with a cylinder-with-spherical-
caps (see Figure 1). This work has been motivated by the need to compute the behavior of
particle systems [Reeves 83] where the volume of the particles may not be ignored and the
particles may not be considered as points. This is, for example, the case of materials like
slime, mud, oil and snow. Furthermore, if the volume and mass properties are to be
manipulated for simulation purposes, the collision detection problem may not be reduced to
simple ray/surface intersections, as suggested in [Miller, Pearce 89]; instead we need to
develop a set of intersection tests between spherical particles’ trajectories and polygons.

Ignoring the particles’ dimensions does not only affect physical simulations but can
also lead to non-realistic images, especially when the spatial variance of the scenery is finer
than the particle size. For instance, the volume of a quantity of snow cannot be ignored when
trying to force it past a small opening. If we consider the trajectories of particles as rays,
some snow would pass through the opening when it should not. We overcome this
inconsistency by allowing the elementary quantity of the deformable material to have a
specific volume.

In our model, we consider each particle’s trajectory between two time steps as
composed of linear segments, as is the case in many particle system simulators. In this
circumstance, we may take advantage of this linear motion to provide a quick intersection
test. To take into account the particle’s volume, we model each segment of the trajectory as a
cylinder with spherical caps, which is the trace of a moving sphere (Figure 1). Collisions are
thus handled as cylinder-with-spherical-caps/triangle intersections (Figure 2). To simplify
our method we ignore collisions between particles.

2. Main Algorithm

The main idea in our method is to find in each time step the collisions between a
cylinder with spherical caps, representing a particle’s trajectory, and the triangles that form
the environment. If the trajectory intersects with more than one triangle, then only the

 Previous position Previous position

 Particle Particle
 motion motion

 New position
 Trajectory

 New position New position
 without col. detection

Figure1. Particle movement between 2 frames. Figure2. Collision detection.

2

intersection closer to the beginning of the trajectory (i.e. is the particle’s previous position) is
of interest (Figure 2). The triangles are either found in a list or we may consider a space
subdivision for efficiency. The main loop of the algorithm is, therefore, shaped as follows :

z for each spherical particle B do :
z compute the new location I of B, assuming no collisions
z for each triangle T in the triangle hierarchy :

z check if there is a collision between B’s trajectory and T
(cylinder/triangle intersection)
z if not

check if there is a collision between B’s final position and T
(spherical-cap/triangle intersection)

 z if a collision point Q exists
 z compare Q to previous collision point I

z if Q is closer to B’s previous position
set I=Q

z return I

There is no need to check for intersections between triangles and the spherical cap
representing the initial position of the particle, as that position represents the final position of
the previous time step.

The method described above consists of two distinct parts: spherical-caps/triangle and
cylinder/triangle intersection tests. The combination of these two algorithms forms a cylinder-
with-spherical-caps/triangle intersection test, which corresponds to finding collisions between
a particle’s trajectory and the environment. We should note here that the two tests
(cylinder/triangle and sphere/triangle) are designed and optimized to work in conjunction.
Thus, for example, some cylinder-with-spherical-caps/triangle intersections will be detected
by the sphere/triangle test and not by the cylinder/triangle test, although the triangle may
intersect both constituent objects, because the sphere/triangle test is computationally cheaper.

To achieve computational efficiency, we calculate a close estimate to the exact
intersection point on the particle’s trajectory in the case where the latter is expensive to
compute. The approximation accuracy decreases as the length of the time step (cylinder
height) increases in relation to the particle size and is acceptable in the usual case of
deformable particles.

In the following tests, we assume that each particle is represented by a 3-dimensional
point C, its radius R, and R2 (for speed up reasons). Each triangle T is defined by its vertices
(T.P1, T.P2, T.P3), its normal vector T.N=),,(γβα and a constant T.δ (from the triangle’s
plane equation 0 zyx =+++ δγβα).

3. Spherical - Cap / Triangle Intersection Test

As already mentioned, a sphere/triangle intersection test is required, for detecting
collisions once the particle reaches its final position. Such an algorithm is also necessary if we
want to detect particle collisions with moving objects. Although there are many references in
the graphics bibliography to sphere/ray [Watt 92] or ray/triangle intersection tests [Voorhies,
Kirk 91], we have not found any specialized method for detecting intersections between a
sphere and a triangle. A general collision detection algorithm for convex polyhedra [Ponamgi
et al 97] could be applied, but the performance would be poor.

Here we present a method based on tests of incremental complexity, which gives very
satisfactory results. In parentheses we note the number of additions/subtractions (+/-) and
multiplications (*) required.

Step1. Check whether the triangle’s plane intersects with the sphere. If not, there is no
sphere-triangle intersection(Figure 3a). Else go to step 2.

3

This is done by calculating the plane’s distance dist from the sphere’s center (using
the plane equation : δT.CT.dist +⋅= N) and comparing abs(dist) to R . (3+/-, 3*)

Step2. Check whether any of the triangle vertices is inside the sphere. If yes, the sphere
and the triangle intersect (Figure 3b). Else go to step 3.
The test is done by calculating each vertex’s distance d from the sphere’s center
and comparing d2 to R2 (best case : 5+/-, 3*, worst case : 15+/-, 9 *).

Step3. Project the sphere onto the triangle’s plane : N.TdistCCproj ⋅−= (3+/-, 3*).

Check if the projected center Cproj lies inside the triangle (15+/-, 14*). If yes, there
is an intersection (Figure 3c). Else go to step 4.

Step4. Check whether the sphere intersects with a triangle edge (Section 3.1) (18 +/-, 16
*). If yes, the sphere and the triangle intersect (Figure 3d). Else there is no
intersection.

3.1 Sphere / line intersection test (step 4)

In the algorithm presented above, we need to further analyze the sphere/edge
intersection test (Figure 4). Below, we use bold symbols for position vectors and plain
symbols for points.

Given a line segment defined by two points P1, P2 and a sphere defined by its center
C and radius R, we want to determine whether the two objects intersect. If the line through C
which is perpendicular to P1P2, intersects with P1P2 at Q, then our problem is equivalent to
determining whether Q lies between P1 and P2 and comparing R2 with the square of the
distance d between C and Q.

Let N be P2-P1. Using the parametric equation of the line segment P1P2,
N⋅+=−⋅+= tP)P(Pt PQ 1121 (1)

the parameter t for point Q can be calculated by :

NN

PN-CN
 1

⋅
⋅⋅

=t (2)

Let the square of the distance between Q and C be d2. If 22 Rd > , there is no
intersection. If d2 = R2 the line is tangential to the circle and the contact point Q is between
P1 and P2 if 10 ≤≤ t .

 If 22 Rd < , the line defined by P1 and P2 intersects with the sphere. If 10 ≤≤ t then
Q lies between P1 and P2 and the line segment P1P2 intersects with the sphere. Otherwise, an

 C C
 |dist|

(a) Step 1 (b) Step 2

 C C
 Cproj

 (c) Step 3 (d) Step 4

Figure 3. Sphere/triangle intersection test

4

intersection occurs if the closest end point to Q lies inside the sphere. The closest point is P1 if
0<t or P2 if 1>t . However we have already excluded that possibility in Step 2. Therefore if
0<t or 1>t , P1P2 does not intersect with the sphere.

 The algorithm described above is of use in a variety of applications where
edge/sphere or ray/sphere intersections are involved, such as ray-tracing. In fact this method
is comparable to the one in [Held 97], and 10% faster than the widely used one suggested in
[Watt 92]. The results have been calculated over a large number of test sets and are
independent of the percentage of intersections found.

3.2 Sphere final placement
The sphere/triangle intersection test does not calculate the exact points of

intersection. This task would be too complicated and time-consuming, without being essential
to the application. Once we determine that the two objects intersect, we only need to leave
the sphere at its current position so it will not pass through the polyhedron, whose surface
contains the triangle. This is a valid assumption for particles which are not large relative to
the triangles, or particles representing deformable objects.

In case of solid spheres, the algorithm could be easily modified to add a displacement
depending on the triangle’s normal and the sphere’s radius, so that the two objects would
merely be in touch.

4. Cylinder / Triangle Intersection Test

The cylinder/triangle intersection test is rather complicated for two reasons :
- it must take into account a variety of possible relative positions of the two objects
- the calculation of the intersection point cannot be omitted.
Since the cylinder represents a particle’s movement in one time step, the objective is to find a
good estimate of the point where this movement will be interrupted. The cylinder axis
corresponds to the particle center’s trajectory, so we shall seek a point on the axis that will
represent the particle’s position at the moment of collision. Each cylinder is represented by
two points, C1 and C2, and a radius R. In the case of particle motion, C1 corresponds to the
previous position of the particle’s center, while C2 represents the position that the particle’s
center will have if there are no collisions in this path.

Step1. Define the normalized vector A, which indicates the cylinder axis direction

 (
21

21

CC

CC

−
−=A) .

 P1 P1
 C d

 r
 Q

 Q R
N r d

 C
 (p) R

 P2

 P2

Figure 4. Line/sphere intersection.

5

Step2. Calculate the plane equation values p1a, p2a, p3a, p1b, p2b, p3b for each triangle vertex
(T.P1, T.P2, T.P3), with regard to planes (π a), (π b), which mark the cylinder caps.
Check the sign of the above values, to determine on which side of each plane the
vertices lie. If all vertices are outside the caps and on the same side, there is no
intersection.

Step3. Check whether the cylinder axis intersects with the triangle’s plane (�). If the axis
is parallel to (π), that is 0. =⋅ NA T , go to Par4, else go to Int4.

Axis is parallel to the triangle plane :
Par4. Find the distance between the axis C1C2 and (π): T./CT.dist +⋅= 1N . If

abs(dist) > R there is no intersection (Figure 5a).
Par5. If any of the triangle vertices lies inside the cylinder, set as intersection point Q the

projection on C1C2 of the vertex inside the cylinder that is closer to C1 (Figure 5b).
Par6. Project C1C2 on (π).Let the projection be C1’C2’ . If C1’ lies inside T, then return C1

as the intersection point.
Par7. Calculate the intersections between C1’C2’ and the edges of T (if any) and find the

intersection Q’ closer to C1. Return as intersection point the projection Q of Q’ on
the cylinder axis (Figure 5c).

Par8. If no intersection is found, possible intersections of T should be detected by the
spherical-cap/triangle test.

Axis intersects with the triangle plane :
Int4. Find the intersection point Q.

 ()C(CtCQ 121 −⋅+= where
)C(CT

)PT(CT.
t

12

11

.

.

−⋅
−⋅−=

N
N

).

 If Q lies between C1 and C2 (10 ≤≤ t) and inside T, then return Q as the
 intersection point (Figure 6a).

Int5. Find the closest points (S1, S2, S3) between each triangle edge (T.P1 T.P2, T.P2 T.P3,
T.P3 T.P1 respectively) and the infinite axis C1C2 (see 4.1 for details). Let the
corresponding distances be d1, d2, d3 . If d1, d2, d3 >R , then possible intersections
(Figure 6b) will be detected by the spherical-caps/triangle test.

Int6. Check if any of S1, S2, S3 lies inside the cylinder (Figure 6c). In this case, return as
intersection point Q the projection on C1C2 of the point (among S1, S2, S3) that is

 C1
 C1 C1

 Q’ Q
 Q
 |dist|

 C2 C2 C2
 (π)
 (π) (π)

(a) Par4 (b) Par5 (c) Par7

Figure 5. Cylinder/triangle intersection calculation, when the cylinder axis is parallel to the
triangle plane.

6

closer to C1. Else intersections would be detected by the spherical-cap/triangle test
(Figure 6d).

As already mentioned, this method does not only detect intersections but also
calculates an intersection point. In most cases, the intersection point is exact. For case Int6,
however, the exact point would be expensive to compute, and the algorithm as described
returns an approximate intersection, which is sufficient for our application.

If the particles were always very small or the movement restricted to certain axes, the
algorithm and the individual tests it uses in each step could be further simplified. However,
this method has been developed to work regardless of particle size and the results have been
satisfactory, even for particles whose dimensions were similar to those of the triangles.

4.1 Closest point between a line and a line - segment

In step Int5 of the above algorithm, we need to find the point P of an edge PaPb which
has the minimum distance d from a line (l) defined by two points C1 and C2 (Figure 7).

Let the distances between Pa and (l) and Pb and (l) be da and db respectively. We wish
to define the location of point)P(Pt PP aba −⋅+= . If we project PaPb, PaQa and PbQb onto a

plane (π) that is perpendicular to (l), the projections will form a triangle (Figure 7). If we
choose (π) so as to contain Pb , the triangle is QbPbPa’ . Let the projection of P on (π) be
P’ = Pa’ + t’ (Pb – Pa’). Since distance proportions are maintained in parallel projections,

t=t’=
s

sa . Using the Pythagorean theorem :
s

sdd
s ba

a 2

222 +−= .

C1 S2

 d2

 d1 S1

 C1

 d3

 Q S3

 C2

 C2

(a) Int4 (b) Int5
 S1

 C1
 S2 S3
 C1

 Q S2

 S1

 C2 C2

(c) Int6 (d) Int6

Figure 6. Cylinder/triangle intersection calculation, when the cylinder axis intersects
with the triangle plane.

7

Therefore : 2

222

s

sdd
t ba

2
+−= (3)

In the above equation, we need to compute s2, which is the square distance between Pb and
Pa’ = Pa + (Qb - Qa) = Pa + (tb - ta) (C2 - C1) where ta, tb are the normalized distances from
C1 to Qa and Qb respectively (for the calculation of tb, ta see equation (2) in 3.1).

If the parameter calculated in equation (3) lies between 0 and 1, then the closest point
P is found between Pa and Pb. If 0≤t then we should set P = Pa, while if 1≥t then P should
be set equal to Pb.

5. Results

The cylinder/triangle and spherical-cap/triangle intersection algorithms, as well as the
cylinder-with-spherical-caps/triangle combined algorithm were tested on a Pentium II PC
with a 400MHz processor, running Windows 98. The code was compiled using Microsoft
Visual C++ 6.0. Several sets of 10,000,000 tests were conducted for each case. Each test was
done between a triangle and a cylinder, sphere or cylinder-with-spherical-caps, all randomly
placed. The results are presented in Table 1 in comparison to the ERIT library [Held 97],
which have been run on the same platform. The second and third columns give the average
execution times for our algorithm and ERIT respectively. As can be observed, the
sphere/triangle intersection tests have identical execution times, while our algorithm clearly
outperforms the ERIT library in the case of the cylinder/triangle intersection test, despite the
fact that our algorithm also computes an estimate to the intersection point. Of course, it must
be taken into account that the ERIT test is a general one, whereas the one presented here
cannot be used autonomously but only in conjunction with the spherical-cap/triangle
intersection test.

 C1

Qa da

 Pa

 d

 (l)
 P

 Qb

 db da

 h Pa’
 Pb P’ sa
 sb

 s

 (π)
 C2

Figure 7. Calculation of the closest point P of segment PaPb to
line (l).

8

Intersection test Execution time (sec)
 Our algorithms

Execution time (sec)
 ERIT

Sphere/Triangle 16 16

Cylinder/Triangle 29 38
Combined 40 -
Table 1. Execution time (in sec) for 10,000,000 tests.

The above tests were used in a particle simulator which produced output for the
Persistence of Vision Ray Tracer (POVray). Figures 8b and 8c show a room (Figure 8a)
covered with a “blobby” mass. 2,912 particles where used. Figure 8b shows the results
obtained with our method, while Figure 8c was produced using a standard ray/triangle
intersection algorithm, which ignores each particle’s volume. As can be seen, our approach
produces better results, especially near edges and small objects. Figure 9 shows a grid
covered with slime. 121,200 blobs have been used. Figure 10 shows a snow covered house.
153,600 blobs have been used. Both images have been created using one time-step; we have
assumed particle movement on only one axis. The results of a more complex motion, could
be easily modeled using more time steps.

Acknowledgements

We would like to thank Prof. John Hughes for his constructive comments which
helped to correct and improve an earlier version of the algorithm. Financial support from the
University of Athens (project 70/4/3241) is acknowledged.

 Figure 8a. Room

Figure 8b Figure 8c
Room covered with blobs. Left image is created using the algorithm proposed in this paper.
Right image is created using a ray/triangle intersection algorithm.

9

References

[Held 97] M. Held. “ERIT - a collection of efficient and reliable intersection tests.” Journal of Graphics
Tools, 2(4):25-44 (1997).

[Miller, Pearce 89] G. Miller and A. Pearce. “Globular dynamics – A connected particle system for
animating viscous fluids.” Computer Graphics in Canada, 13(3):305-309 (1989).

[Ponamgi et al 97] M. Ponamgi, D. Manocha and M. Ling. “Incremental algorithms for collision
detection between polygonal models.” IEEE Transactions on Visualization and Computer Graphics,
3(1):51-64 (Jan-Mar 1997)

[Reeves 83] W.T. Reeves. “Particle systems – A technique for modeling a class of fuzzy objects.”
Computer Graphics (Proc. SIGGRAPH 83), 17(3):359-376 (1983).

[Voorhies, Kirk 91] D. Voorhies and D. Kirk. “Ray-triangle intersection using binary recursive
subdivision.” In Graphic Gems II, edited by J. Arvo, pp. 257-263. San Diego: Academic Press, 1991.

[Watt 92] A.Watt and M.Watt. “Advanced animation and rendering techniques.” New York:
ACM Press, 1992.

Figure 9. A grid covered with slime Figure 10. House covered with snow.

