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Abstract Background  Opening design is a major consideration in architectural buildings during early 

structural layout specification. Decisions regarding the geometric characteristics of windows, skylights, 

hatches, etc., significantly affect the overall energy efficiency, airflow, and appearance of a building both 

internally and externally. Methods In this work, we employ a goal-based, illumination-driven approach 

to opening design using a Bayesian optimization approach based on Gaussian processes. A method that 

enables designers to conveniently set lighting intentions in conjunction with the qualitative and quantitative 

characteristics of the desired openings is proposed. Results The parameters are optimized within a cost-

minimization framework to calculate geometrically feasible, architecturally admissible, and aesthetically 

pleasing openings of any desired shape while taking into account the designer's lighting constraints. 

Keywords Inverse Geometry; Lighting Simulation; Scene Synthesis 

1 Introduction  

Accurate light-transport simulation has been aided by significant improvements in the convergence speed 

in recent years. This is largely attributed to the more advanced statistical light-transport solvers, denoising 

algorithms, and inclusion of hardware-accelerated ray tracing in commodity GPUs. This has unlocked a 

substantial potential for its utilization in demanding applications of light simulation (such as architectural 

lighting) in terms of accuracy and consistency. In this work, we leverage photorealistic simulation via 

interactive path tracing to propose an automatic solution to the opening design problem that maps 

effectively to the luminance distribution characteristics of natural light scattering. 



   

 

   

 

Opening design is an important subspace in architectural building design. An opening is a geometric 

formation that connects the interior of a building to its exterior. In our context, the problem of designing 

such openings is approached as an inverse geometry problem, i.e., a goal-driven definition of the design 

parameters (commonly referred to as the inverse opening problem). 

Modern opening designs place human factors at the center of the design process. This is because energy 

and efficiency considerations do not ensure visual comfort or pleasing aesthetic results. For example, in 

workspaces where employee comfort, reliability, and safety are pivotal in day-to-day activities, an 

inconsiderate window design can cause discomfort, eye strain, inadequate privacy, and psychological stress. 

Therefore, occupant requirements are important aspects of the opening design process. For years, designers 

have used empirical and simulation methods to assess the performance of proposed configurations. 

Previous studies [1, 2, 3] have highlighted the importance of the window position and size to the overall 

efficiency of a building's design both in terms of energy consumption and residential comfort. 

With regard to daylight availability, one of the most commonly used methods is the daylight coefficient 

(DC) approach. It was originally proposed by Tregenza and Waters [1]. Other metrics include the daylight 

factor, daylight autonomy measure, and useful daylight illuminance (UDI) [4]. 

Glare is also an adverse effect that should be minimized. Quantifying the risk and levels of glare has 

been studied extensively [5, 6]. A standard metric for glare under artificial lighting was published by the 

Figure 1 Openings computed on a two-story house using our method. In this example, 27 openings were optimized 

using 17 planar samplers for a total of 44 optimization parameters. Sky lighting is set for office hours for the 

summer–fall seasons in Capetown. 



   

 

   

 

International Commission on Illumination CIE under the name "unified glare rating" (UGR). Fisekis et al. 

[5] approached discomfort glare specifically for windows and acknowledged the limitation of excluding 

natural light sources from the UGR. Wienold and Christoffersen [6] proposed the "daylight glare 

probability" (DGP) for the specific case of daylighting. 

In this work, we primarily focus on the design of openings as natural light sources and their potential to 

maximize natural light usage and minimize the requirements for artificial light sources during the daytime 

(Figure 1). We describe and develop a method as well as the respective working system that combines 

robust photorealistic rendering, a comprehensive set of tools for describing the designer's illumination 

requirements and aesthetic preferences, and an optimization framework adapted to the opening design 

problem. 

The contributions of this work are as follows: a) a problem formulation based on Bayesian optimization, 

which acknowledges the designer's workflow and allows for a convenient expression of each part of their 

design process; b) accurate physically-based lighting evaluation during optimization by utilizing maximum 

luminance environment maps for glare prevention; and c) support for arbitrary opening designs using 

daylighting systems of any shape, size, and orientation. 

The remainder of this paper is organized as follows. In Section 2, we cover related work on opening 

design and the background of sky modeling and Bayesian optimization. Section 3 describes the necessary 

elements of the goal-driven opening design process. Section 4 presents an in-depth analysis of the proposed 

method followed by an experimental evaluation in Section 5. Finally, we conclude with a method recap and 

future directions in Section 6. 

 

2 Background and Related Work 

2.1 Inverse Opening Design  

An inverse problem can be described as the process of determining the cause of a phenomenon by starting 

from its effects. In this context, several publications have contributed to the field of inverse design with 

direct implications for many aspects of 3D scene synthesis. This section covers major contributions to the 

subject of light-driven design, with an emphasis on aspects pertaining to the inverse opening problem.  

Mahdavi and Berberiodu-Kallivoka [7] investigated the potential of integrating computational light 

simulations with computer-aided daylighting modeling during building design. They designed and 

proposed a tool in which the variations in a performance indicator (e.g., daylight factor, average 

illuminance levels, and uniformity factors) can be translated directly to modifications in a set of design-

related variables (e.g., geometry configuration and material properties). The authors adopted an inverse 

approach for design exploration. The variations in the design space are tested and adopted only if the 

subsequent effect on the performance indicator is desirable. 



   

 

   

 

Tourre et al. [8] were among the first to propose an approach that used an accurate light simulation for 

opening design, albeit with a highly simplistic setup. The potential opening areas are meshed in so-called 

“opening elements.” Each opening element is considered as an intermediate and anisotropic light source. Its 

lighting contribution to the interior of the building is computed as an image through a pinhole camera 

simulation. 

Fernández and Besuievsky [9] defined a constrained problem for roof skylights and artificial Lambertian 

light emitters. They considered two categories of light constraints: a) geometric restrictions and b) lighting 

intentions. The first category considers the imposed constraints that the light source needs to achieve (such 

as the light size, aspect ratio, source spacing, or symmetries). For example, the building construction 

constraints regarding the installation of skylight sources on a roof may impose a regular distance between 

skylights and their alignment along a given axis. For lighting intentions, they considered the valid intervals 

of light intensity that each user-specified surface is allowed to reflect. The artificial and natural light 

sources are modeled as Lambertian emitters. Similarly, all the materials are required to be Lambertian to 

facilitate a GI solution using a modified Radiosity method. 

Subsequently, Fernández et al. [10, 11] focused on the opening design problem and extended it to support 

anisotropic light incidence. Each potential opening was divided into several smaller patches, and each 

contribution was approximated using a pinhole camera. They again used the Radiosity method to calculate 

the contribution of the patch from a static sky or environment map and used it to determine the best 

opening shape. The resulting contribution of the opening was the sum of all the elements. The support for 

arbitrary lighting incidence rendered this approach a good candidate in an urban context [12]. Here, the 

Radiosity method was used to compute daylighting that includes inter-reflections with the exterior 

components of a building. The inputs to the process are a sky model, hourly daylight data, an urban model 

with a selected objective building, and an interior room model with predefined locations for openings as 

discretized surface patches. The Radiosity system was solved to selectively open the optimal patches 

according to various daylighting metrics. 

One of the first methods using a robust light transport solver for the inverse opening design problem was 

presented by Kalampokis et al. [13]. They described a generic, physically-based method that determines the 

number, location, and shape of openings given the designer’s lighting intentions, the candidate surfaces for 

hosting openings, and a description of the scene. Similar to previous work, they used an arbitrarily fine 

quantization of the opening domain into candidate opening elements. The opening domain is virtually 

"diced" using constructive solid geometry (CSG) subtraction based on ray tracing during the estimation of 

the contribution of each element. Contrary to previous work, these openings have actual physical 

characteristics that are respected by the global illumination solution used. The illumination was measured at 

user-defined sampling locations. Here, the illumination goals were provided in the form of irradiance levels. 

The contribution of each opening to each sampling point was stored in a matrix. The cumulative lighting 

contributions of multiple light paths crossing the opening domain were considered to be additive. This 

enabled the formulation of the problem as a least mean squares optimization problem using non-negative 



   

 

   

 

values. It was then rounded to a binary solution vector containing "on" and "off" elements. The resulting 

binary configuration of the elements was used as the initial state of the a genetic algorithm. This phase 

stochastically mutated the solution, thereby favoring error minimization and shape coherence. This 

effectively incorporated structural constraints in the formed opening patterns, such as the compactness, 

number, and boundary shape of the openings. 

 

2.2 Daylight Simulation 

In many environments, natural light from the sky dome can be the dominant factor in a scene’s illumination. 

Specifically, in the context of building openings,  effective utilization of daylight is the most important 

factor for a building's energy profile and the comfort of its inhabitants. The importance of realistic and 

controllable sky illumination in daylighting simulations and rendering has resulted in several analytical 

models of the sky luminance distribution. Considering the high cost and difficulty of simulating 

atmospheric phenomena, these are parametric sky models represented by simple analytical expressions that 

can efficiently generate plausible natural radiance maps of the sky. Analytical sky models have been 

actively researched for several years.  

A few have been formally adopted by the International Commission on Illumination (CIE) [14]. Many 

well-known and widely used models in computer graphics are based on variations of the Perez formula [15]. 

These include the widely used models by Preetham et al. [16] and the Hosek and Wilkie [17] clear-sky models. 

These provide analytic formulas for the upper hemisphere. 

 

2.3 Bayesian Optimization 

Significant challenges are encountered during the optimization stage in the realm of non-convex function 

minimization. In particular, when an evaluation function is computationally expensive, the acquisition of 

informative partial derivatives can be highly intricate or non-existent.  

The Bayesian optimization theory [18] provides an elegant, computationally efficient, and data-efficient 

solution to these issues. It has achieved significant success in the context of hyperparameter optimization 

[19]. This technique leverages the probabilistic modeling of uncertainty directly in the function space to 

efficiently explore (both globally and locally) the search space and identify feasible solutions to unknown 

objectives.  

More formally, given a multidimensional variable space Χ and an arbitrary function 𝑓:  𝛸  → ℝ   (which 

cannot be expressed analytically, is non-convex, and is computationally intensive to evaluate), we wish to 

determine a configuration 𝑥⋆  ∈  Χ such that 

 

𝑥∗ =   𝑎𝑟𝑔𝑥∈𝑋 𝑚𝑖𝑛 𝑓 (𝑥),  (1) 

 



   

 

   

 

To solve this, a Bayesian optimizer employs an iterative scheme that can be summarized in two steps. 

First, it receives a finite precomputed subset 𝐷  =  {(𝑥𝑖  ,  𝑓(𝑥𝑖))}
𝑖=1

𝑛
 of sampled configurations in 

conjunction with their associated values computed from the actual function and constructs a probabilistic 

model that expresses a posterior distribution over the function space of the given dataset 𝑃(𝑓 | 𝐷). In 

practice, to maintain a computationally tractable expression, this process is typically modeled by an explicit 

joint distribution with typical examples being the Gaussian process [20] and student-t process [21] using 

learnable kernel parameters for the covariance matrix.  

In the second phase, the optimizer iteratively refines the internal surrogate function encoded by the 

posterior using a risk minimizer known as the acquisition function. Specifically, we propose the next 

sampling point based on 

 

𝑥𝑛+1
  =   𝑎𝑟𝑔𝑥 𝑚𝑖𝑛 𝑎 (𝑥; 𝐷𝑛),  (2) 

 

where the function 𝑎 :  𝑋  ⟶ ℝ leverages the uncertainty imbued in the posterior distribution to guide the 

exploration of the search space towards promising regions, while also exploiting already known ones.  

Given a new proposal 𝑥𝑛+1, the function 𝑦𝑛+1  =  𝑓(𝑥𝑛+1) is evaluated, and the result is backpropagated 

to augment the dataset 𝐷𝑛+1  =  {𝐷𝑛 ,  (𝑥𝑛+1, 𝑦𝑛+1)}. Thereby, the statistics of the model are updated. It can 

be proved that by transforming the problem into a process of identifying a sequence of proposals with an 

appropriate definition of an acquisition function, the optimizer converges to a function minimum. 

Nevertheless, there are various types of acquisition functions [19]. These have different ways of balancing 

exploration and exploitation, depending on the task at hand. 

The notable contributions using this optimization scheme span diverse fields. These range from a purely 

machine learning context such as deep learning [22], to direct applications in robotics [23] and reinforcement 

learning [24], as well as computer graphics-related domains such as visual design appearance and 

interpolation [25] and procedural animation [24]. We refer interested readers to a recent survey [19] that 

contains a comprehensive analysis of this framework and its immediate application. 

 In this work, we employed Bayesian optimization as a derivative-free optimizer to minimize a 

computationally expensive and non-analytic function related to the design of architectural openings. 

Modeling the uncertainty over the entire function domain is a flexible tool for deriving guiding decisions 

via acquisition functions that balance both exploitation of local space (similar to the case of Markov chain 

Monte Carlo algorithms) and attempts to undertake global exploration steps based on samples extracted 

from a data-learned posterior distribution that would result in more informative regions of the hidden 

function. 

 

 

 



   

 

   

 

3 Opening Design Specification  

3.1 Design Elements  

To develop a process that maps intuitively to a designer's pipeline and requires simple tool interactions, we 

modeled the goal-driven design process with four classes of elements (Figure 2). These are used to 

describe the geometry, design constraints, and illumination goals.  

Static geometry. This is the geometry of the main architectural model in which the openings should be 

placed. This also includes the surrounding environmental elements that contribute to the proper 

illumination evaluation (Figure 2a). The geometry can be modeled in any application and imported into the 

opening design system. Any part of the static geometry can host openings (see Opening Domains). The 

only practical limitation is that it behaves correctly under constructive solid geometry (CSG) operations. 

Opening domains. These establish user-provided admissible regions for the opening positions. They are 

represented as arbitrary rectangles in space that can be disjointed or concatenated to form larger and more 

complex regions. The static geometry is referenced by this component to apply the opening configuration. 

Figure 2a depicts the definition and use of various standalone or grouped regions to establish potential 

opening domains on the walls of a two-story building. 

Opening templates. These meshes are used to cut out the openings on the static geometry. The opening 

templates are oriented according to the opening domains and are situated within their combined boundaries. 

In sharp contrast to prior art [13], these can be of an arbitrary shape as long as these are watertight, in order 

to perform valid CSG operations on the target geometry. Such opening templates are shown in Figure 2c. 

This enables the design of intricate openings and daylighting systems. 

Figure 2 Opening design elements of our method. a) Static geometry and opening domains. b) Illumination goals 

(planar samplers shown in green). c) Opening template examples. 



   

 

   

 

The position and orientation of opening templates are constrained to follow the shape and extents of the 

opening domains. Meanwhile, their dimensions are optimized independently. If the designer requires, 

additional constraints with regard to spacing, uniformity, or cross-domain similarity or symmetry can be set 

by the user for artistic control. To support a wide range of potential opening formations, the final shape of 

the template is governed by three sets of parameters: a 2D translation vector 𝑝𝑡 on the parametric space of 

the opening domain, 2D scale vector 𝑠𝑡  (width, height), and 2D spacing offset vector 𝑜𝑡 . The third 

parameter is used to generate additional openings of an identical scale 𝑠𝑡  at positions {𝑝𝑡 + 𝑖𝑜𝑡}𝑖 = 1
𝑛 . Here, 

𝑛  is calculated such that the number of the offset openings is within the bounds of the domain. 𝑜𝑡 can 

accommodate negative values. The sign effectively determines the offset direction. Not all parameters and 

dimensions need to be under optimization depending on the desired degrees of freedom (Figure 3). 

 

Illumination goals. The desired illumination levels are set using two types of samplers: planar and view. 

Planar samplers (Figure 2b) are used to set illuminance goals on rectangular patches in space (typically on 

surfaces). Meanwhile, view samplers are used primarily to set glare prevention goals. Setting lighting 

intentions in the form of target illumination ranges is a standard practice for lighting-design professionals. 

Planar samplers require users to define a range of reasonable irradiance values (𝐸𝑚𝑖𝑛, 𝐸𝑚𝑎𝑥).  

Similar to Vitsas et al. [26], a view sampler is a component that measures the maximum average 

luminance (in nits) over a discretized frustum. It is implemented as a regular perspective camera. View 

samplers typically require a maximum permitted radiance level 𝐿𝑚𝑎𝑥  (minimum of zero). However, for 

specialized applications (e.g., those that have specific uses of reflectors, etc.), a nonzero lower bound 𝐿𝑚𝑖𝑛 

can be specified. 

 

Aesthetic and functional constraints. In many designs, the building symmetry, floor-to-floor opening 

alignment, and spacing constraints should be respected out of purely aesthetic considerations. 

Figure 3 Design space formulation examples. Opening parameters are added selectively to the state vector for 

optimization. a) A template applied on a group of connected domains. b) Two templates of different types on separate 

domains. c) A template with adjustable position and spacing. d) Two templates applied on constrained domains with 

different number of potential openings. e) Three instanced domains sharing the (𝒑𝟏, 𝒔𝟏, 𝒐𝟏) parameters. 



   

 

   

 

To accommodate similar architectural decisions while simultaneously simplifying the optimization process 

by reducing the target parameters, we allow for a wide range of constraint specifications.  

We begin with the grouped domains in Figure 3a. These comprise a single concatenated domain that is 

sampled as a continuous parameter space. This practically accommodates "jumps" between disjoint regions. 

Figure 3b shows the capability to use multiple disjoint domains and groups with separate parameters for 

optimization. Figure 3c illustrates an example configuration optimized for both cutter position (upper left 

green square) and spacing offset vector. Figure 3d illustrates how the parameter ranges of different groups 

(here, the number of openings) can be optimized jointly. Finally, in Figure 3e, we employ parameter space 

instancing of the locally parameterized opening templates. The mechanisms allow for versatile opening 

configuration constraints and a rapid exploration of the design space. Here, the symmetry, alignment, and 

uniformity are the most important aspects. These also help substantially minimize the parameters under 

optimization, thereby facilitating faster convergence. 

3.2 Sky modeling 

Because our main objective is to optimize a design based on natural light flow, it is important to consider 

the geospatial location as well as the temporal domain. Lighting evaluation may become meaningless 

unless it is spread over daytime intervals relevant to the space occupancy and function. These should also 

be examined over the course of one year and for the specific geospatial location and orientation of a 

building. The most convenient method to model the contribution of the sky is to use captured sky images. 

Such captures are intrinsically realistic, may include cloud coverage and building surroundings, and are 

typically encoded on an HDR environment map. However, this procedure is impractical and potentially 

unreliable in advanced simulation scenarios. We used the clear-sky dome [27] and solar radiance [17] model 

proposed by Wilkie and Hosek. The user selects the time interval in months, days, or hours. The module 

generates a map (parameterized in hemispherical coordinates) of the average and maximum radiance across 

the sky (Error! Reference source not found.). Customized environment maps from external artificial light 

sources can also be imported. These environment maps can be computed once and reused. 

Figure 4 Examples of average and maximum radiance maps of a working day (9:00 a.m–18:00 p.m.) from January to 

June in the southern hemisphere (Sydney) and northern hemisphere (New York). The luminance is suppressed for 

clarity. 

 



   

 

   

 

4 Method Description 

4.1 Method Overview 

The inputs for the proposed method are the elements of an architectural design described in Section 3. The 

method generates a number of valid opening recommendations. The resulting opening design system 

consists of several stages. These are briefly highlighted in (Figure 5). 

As part of the design cycle, the desired illumination goals are specified inside the three-dimensional 

scene. The opening domains are provided by the user in the form of parametric surfaces at the 

architecturally admissible parts of the model. Next, several applicable opening templates are selected for 

each opening domain in conjunction with the constraints on the opening properties that can impose certain 

aesthetic or structural restrictions (Section 3.1). The independent opening template parameters are 

concatenated into a single parameter vector 𝑥  and optimized using a custom approach based on Bayesian 

optimization (Section 4.4). 

For each parameter vector instance, opening templates are applied to the scene geometry as cutters 

using constructive solid geometry subtraction. Moreover, the illumination is evaluated based on the 

predetermined lighting conditions (Section 4.2). Our method is orthogonal to the selection of the 

underlying illumination computation algorithm. However, path tracing was selected to better estimate the 

complex light transport phenomena. 

4.2 Illumination Evaluation 

To evaluate the appropriateness of a given opening configuration 𝑥𝑖, after all the CSG operations were 

applied to the geometry, photometric statistics are collected from the samplers distributed manually across 

the scene by the designer (which function as virtual sensors). Both types of samplers utilize photorealistic 

simulation via path tracing to capture light responses from the environment. 

As mentioned in Section 3.2, the sky dome and sun disk illumination contributions are captured in 

environment maps over a sampled timeframe of daylighting intervals across the year for a particular 

location. One environment map expresses the average value, and the other registers the maximum 

luminance at each azimuth and elevation (Error! Reference source not found.). The maps are prepared as a 

preprocessing step after adjusting all the daylighting parameters. We use the average sky luminance while 

computing the surface illuminance for planar samplers. This is because similar to the bibliography, we are 

Figure 5 Overview of our opening design method. 



   

 

   

 

interested in a statistical measure for lighting-goal satisfaction. However, for glare (view samplers), we 

need to monitor the peak luminance (maximum luminance environment map). This was because average 

values would be suppressed significantly by the averaging, thereby eliminating problematic daylighting 

events. 

4.3 Cost Function 

This step entails the transformation of the evaluated lighting at the samplers into a meaningful normalized 

error given a candidate opening configuration 𝑥 . Because an analytical form of the objective function is 

not readily available, we should quantify the recommended opening configuration for optimization by 

aggregating the response of each sampler and measuring how effectively the proposed configuration aligns 

with the desired design goal. We define the cost function as 

𝐶𝑖𝑙𝑙𝑢𝑚(𝑆,  𝑥)  =   ∑ 𝜙(𝐿(𝑆𝑘 , 𝑥), 𝑠𝑘
𝑚𝑖𝑛 ,  𝑠𝑘

𝑚𝑎𝑥)

|𝑆|

𝑘=1

,  (3) 

where 𝑥  is the evaluated domain input sample (opening configuration) and 𝐿  is the measurement of the 

sampler 𝑆𝑘  (illuminance or peak luminance). 𝑠𝑘
𝑚𝑖𝑛  and 𝑠𝑘

𝑚𝑎𝑥  represent the illumination goal limits 

(expressed in appropriate units) depending on the type of the sampler 𝑆𝑘. Finally, 𝜙(⋅) maps the result to a 

normalized value with respect to the limits using the sigmoid function: 

𝜙(𝑥, 𝑦0, 𝑦1) = {

2𝜎(−𝑘𝑙𝑏(𝑥 − 𝑦0)) − 1           𝑥 < 𝑦0                 

         2𝜎(𝑘𝑢𝑏(𝑥 − 𝑦1)) − 1             𝑥 > 𝑦1       , (4)  

     0                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where the hyperparameters 𝑘𝑙𝑏  and 𝑘𝑢𝑏  control the elasticity of the function below and above the range 

limit, respectively. This prevents a flat cost function response for out-of-range parameters, thus improving 

the convergence. We used 𝑘𝑙𝑏 = 10−2 and 𝑘𝑢𝑏 = 10−3 for all the experiments. 

Candidate openings can overlap depending on the current parameter state 𝑥 since the position and scale 

for each opening are independent coordinates unless the openings are explicitly instanced. To mitigate this, 

we incorporate an additional term into the cost function. Specifically, we utilize the Intersection-over-

Union function to compute the percentile volume overlap between each template pair (𝑇𝑖 , 𝑇𝑗), as follows: 

𝐶𝑇   =   ∑
𝑉(𝑇𝑖   ∩ 𝑇𝑗)

𝑉(𝑇𝑖 ∪ 𝑇𝑗)

 

𝑖<𝑗

,       𝑖, 𝑗 =, … , |𝑇|,  (5) 

where 𝑇  is the set of all active opening templates (Section 3.1) and the function 𝑉(⋅) measures the volume 

in world space coordinates. The resulting penalty increases the overall cost of the surrogate objective, 



   

 

   

 

thereby deterring the optimizer from selecting the configurations. Using this term, the global cost function 

becomes 

𝐶(𝑆, 𝑇, 𝑥) = 𝐶𝑖𝑙𝑙𝑢𝑚 (𝑆, 𝑥) + 𝑤𝐶𝑇(𝑥),  (6) 

where the hyperparameter 𝑤  controls the impact of the penalty function on the overall cost. It was set to 10 

for all the experiments. 

4.4 Cost Minimization 

In our method, mapping to the Bayesian framework outlined in Section 2.3 is relatively straightforward. 

The data samples composing the set 𝐷 are defined by the number of opening configuration states 𝑥𝑖  in 

conjunction with their associated costs evaluated using Equation 6. Our goal is to identify the optimum 

opening configuration 𝑥⋆ by minimizing Equation 1. Therefore, we adopted an online training scheme in 

which only a few initial samples, |𝐷| = 30 in our case, are used to fit the initial model. The training 

samples are generated by Latin-hypercube stratified sampling of the opening configuration parametric 

domain. 

For the posterior distribution 𝑃(𝑓 | 𝐷), we choose a zero-mean Gaussian process with an isotropic 

Matérn kernel [28], with the hyperparameter 𝜈 = 5 . In the subsequent lighting and cost evaluation iterations, 

we query the Bayesian optimizer for the next exploration step to identify the most promising configurations 

using Equation 2. We guide the exploration phase of our framework using the Expected Improvement [29] 

acquisition function without hyperparameters. Then, at a fixed step-size of 10 iterations, we refit the entire 

model using all prior knowledge and iteratively apply this process until a satisfactory solution is found or 

the maximum number of 100 steps is reached. 

 

4.5 Design Solution Recommendations 

The valid generated solutions that satisfy the constraints and achieve the illumination goals are stored, and 

the 𝐾 best is presented to the designer. 𝐾 is a user-defined option. The designer can then select the most 

appropriate goal according to the aesthetic or functional goals that could not have been defined stringently 

otherwise. Because the optimizer can produce many similar valid solutions, we clustered these using the 𝐾-

means clustering algorithm. Here, the distance corresponds to the ℓ2-norm on the state vector 𝑥. After 

clustering, we select the solution closest to the mean of the cluster as the representative solution. We chose 

the 𝐾-means method. This is because it exhibits high performance and generates separable clusters, which 

is a key characteristic for visually distinctive design variations. It is important to note here that the designer 

can freely adjust the parameters of the resulting openings, "freeze" a subset of the parameters, and 

iteratively refine the design by re-optimizing the remaining ones. 



   

 

   

 

5 Implementation and Evaluation 

5.1 Implementation Details 

We constructed our opening design system as a plugin on top of the existing world modeling and 

interactive rendering pipeline offered by Unreal Engine 5 [30] using the native physically-based path tracing 

simulator for global illumination. We used the native Unreal Engine plug-in for the CSG operations applied 

to the scene geometry. This enabled us to fully utilize the existing integrated real-time modeling and 

rendering lifecycle of the engine; utilize the built-in hardware-accelerated path tracer, world building, and 

asset management facilities; and focus on the tasks at hand.  

The planar samplers discussed in Section 3.1 are sampled regularly over their surface. For each sample, 

a batch of random, cosine-weighted rays is traced within the scene to capture the illuminance values. Each 

batch contains 32 rays. For the view samplers discussed in that section, we typically use a frustum 

resolution of 16 × 16 pixels with 32 samples per pixel. 

To implement the Bayesian optimization framework, we adapted a publicly available implementation 

[31]. 

5.2 Evaluation 

We tested our method on a collection of architectural instances of varying complexity in terms of 

illumination, geometric and aesthetic goals. These scenes are shown in Figures 6, 7, 8, and 9. The 

performance measurements were recorded on an NVIDIA RTX 3080Ti with 12 GB of VRAM and an Intel 

i7 12700 K CPU with 32 GB of RAM. We provide the full source code of our proposed method and the 

datasets presented in this work at https://github.com/cgaueb/ods. 

Figure 6 Opening design configuration proposed by our method. The top row illustrates the optimized opening 

locations. In the bottom rows, the heatmaps quantify the light contributions at various sampling locations. The scene 

is optimized for 14 openings using 2 view and 11 planar samplers for a total of 41 optimization parameters. Sky 

lighting is set for office hours and the summer–fall seasons in New York. 



   

 

   

 

Qualitative Evaluation. To stress the opening domain configuration and record the quality of the 

optimized solutions, we conducted experiments on distinct cases. These included scenes with high degrees 

of freedom to test the space exploration performance and those with more stringent and potentially more 

realistic design constraints.  

A representative experiment of a typical design workload is presented in the Apartment scene 

(Figure ). It is a standard apartment in which the designer pre-determines the functional layout of the space. 

The front door leads to a living room that forms a unified space with the kitchen. This part of the house 

requires an additional door leading to the outside as well as adequate lighting for various important human 

tasks (cooking, reading, item location, etc.). A series of patch samplers were distributed to achieve 

uniformly high illuminance (400–800 lx). Additionally, a view sampler was incorporated to suppress the 

adverse glare caused by the nearby openings. This was performed to reserve space for potential sitting or 

entertainment spots. The other parts of the house were intended for bedrooms, bathrooms, and study spaces. 

Planar samplers were used to set compatible illumination goals. A view sampler was positioned such that it 

allowed for the generation of a home office space with low glare. For the bedrooms, a marginally lower 

illumination goal was set (200–500 lx). Opening domains were set on the exterior walls of each room. The 

opening template is a box parameterized over its scale and position. The resulting configurations and 

illumination levels are shown in Figure . The opening design framework respects all the geometric 

constraints while satisfying the lighting goals. The goal attainment percentage is 92.8%. 

Figure 7 The scene is optimized for two openings using two view and five planar samplers for a total of seven 

optimization parameters. Sky lighting is set for office hours for the spring–summer seasons in Rome. 

Sky lighting is set for office hours for Spring-Summer seasons 

in Rome 



   

 

   

 

The Hall scene (Figure 7) represents a social event room. This is a scenario in which the geometric 

constraints disagree with the lighting goals. In particular, a large opening in front of the building should 

provide convenient access to the balcony. This requirement generates a bright zone. However, it leaves the 

back of the room underlit. To counter this effect, a cylindrical opening was positioned so that adequate 

lighting penetrated the deeper parts of the room. Planar samplers (5) with a target illuminance of 900–1000 

lx were used to establish appropriate lighting conditions for the entire event room. In addition, two view 

samplers with a luminance range of 0–1000 nt were employed to suppress the adverse glare caused by the 

large balcony door. The entire front wall and ceiling were indicated as opening domains, and the sizes and 

positions of the two openings were optimized. The resulting configuration naturally created an overhang to 

suppress excess glare, while light penetrated to the back through the skylight. A goal-attainment percentage 

of 87.6% was achieved. 

The Mall scene (Figure 8) simulates a renovation action in which the initially inferior skylight design is 

retrofitted using a newly added canopy. The lighting goal was to decrease the excess light from the glass 

roof panels. The only geometric constraint was the cylindrical shape of the opening. In this example, the 

overlap cost is more relevant than in the other examples. Even with 15 opening templates, overlap was 

prevented, whereas the additional construction fixed the inconsistencies of the earlier design. A collection 

of 20 planar samplers with a target range of 500–1300 lx was spread over the building to maintain adequate 

illumination primarily for the shopping spaces on the first floor. The resulting configuration achieved a 

goal attainment percentage of 82.0%. 

Figure 8 The scene is optimized for 15 openings using 20 planar samplers for a total of 45 optimization parameters. 

Skylighting is set for office hours for the summer–fall seasons in Capetown. 



   

 

   

 

In the University Building (Figure 9), the illumination goal was to provide sufficient lighting to the 

hallways of the four-story compound. We used 32 planar samplers (eight per floor) with a target range of 

700–1200 lx. This range ensured a well-lit interior for all the building corridors. The opening domains were 

associated with the exterior walls of each wing and the main building. Achieving a configuration that 

satisfies all the floors presents a challenge. This is because the occlusion factor from the surrounding 

environment and the building varies substantially among the floors. 

The opening templates were optimized over all the parameters, namely, the position, scale, and spacing 

offset. Enabling the optimization of the spacing offset practically solves for the number of required 

openings. To ensure symmetry and alignment between the floors, we used instancing (discussed in Section 

3.1) on the vertical plane. We employed instancing for the domains of the two opposite wings as well to 

obtain more regular results. This is an example of a large number of samplers placing an excessive demand 

on our method both in terms of lighting evaluation and cost minimization, because the lighting goals on 

higher floors are significantly more convenient to satisfy than those on lower floors. The resulting solution 

attained this goal in 85.5% of the cases. 

Finally, the Mansion scene (Figure 1) is a complete example that takes advantage of all the available 

constraints (instancing, symmetry, and spacing) and uses numerous illumination targets. The opening 

domains on the façade and backside use instancing in both vertical and horizontal planes to achieve 

symmetry. The windows use a box-shaped opening template except for a circular central window over the 

main door. The sidewalls employ instancing and domain-grouping methods to accommodate several design 

options. Planar samplers (15) are placed throughout the interior. The rooms have a target illuminance range 

of 700–1000 lx, whereas the hallways have an ancillary illumination target of 300–600 lx. The process 

achieved a goal-attainment rate of 95.7%. 

 

Performance Measurements. The execution time of the proposed method is spent on three distinct 

modules. First, CSG operations are required to map the state vector to the actual openings. This is trivial to 

Figure 9 The scene is optimized for variable number of openings using 32 planar samplers for a total of 10 

optimization parameters. Sky lighting is set for office hours for the spring–summer seasons in Rome. 

 



   

 

   

 

apply. The medium-complexity models require less than 2 ms for each template on average. A path-tracing 

simulation is executed for each sampler. For the sampler configuration discussed in Section 5.1, the 

average time per scene to obtain the simulation result and apply the denoising post-processing step is 12 ms 

for each sampler. Finally, the Bayesian optimizer requires less than 1 ms (on average) for the initial fitting 

of the model and subsequent refitting stages. Querying the optimizer for new samples requires 20 ms on 

average. Each opening design estimation session took less than 2 min (on average) to complete. Please 

consider that most of the time was consumed for updating Unreal Engine’s internal state and rather than by 

the stages described above. 

 

6 Conclusions 

In this work, we presented a goal-driven method for designing openings in architectural scenes using the 

Bayesian optimization theory. Using the proposed opening specification, the user is presented with a 

flexible and expressive framework that accounts for both lighting goals and functional or aesthetic 

geometric constraints. A complete implementation was integrated into a high-performance rendering 

engine to support accurate photometric evaluation. This enabled us to define the appropriate types of 

samplers that exploit photorealistic light simulation. Finally, we incorporated physical daylight 

measurements from existing sky models that account for the complete temporal trajectory of the sun disk. 

Limitations. We evaluated several strategies to minimize the number of parameters required for 

optimization while simultaneously satisfying the geometric constraints. However, in scenarios with an 

excessive number of parameters, the results of the proposed framework deteriorated in terms of quality 

(“the curse of dimensionality”). Needless to say, contradicting or unrealistic goals have a significant impact 

on the quality of the proposed solutions. 

Future Work. In this work we did not include any direct energy consumption metrics in our cost function. 

Carlos et al. [32] demonstrated results while optimizing the window size for both visual comfort and energy 

consumption. They concluded that optimizing for only one goal hinders performance with regard to the 

other goal. Windows optimized exclusively for visual comfort produce large energy-consumption patterns. 

However, optimizing window size for low energy consumption does not satisfy any predetermined visual 

acceptance criteria. In the future, we will include metrics regarding energy consumption within our cost-

minimization framework by combining natural and artificial lighting solutions in a unified framework. 

Finally, we would like to investigate data-driven methods based on deep neural networks that have shown 

very promising results in scene synthesis [33]. Similar approaches could help encode the designer's process 

within the network and be used as generative models. However, this would require a professionally curated 

and extensive dataset. 
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