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Abstract—The problem of reassembling an object from its parts or fragments has never been addressed with a unified computational

approach, which depends on the pure geometric form of the parts and not application-specific features. We propose a method for the

automatic reconstruction of a model based on the geometry of its parts, which may be computer-generated models or range-scanned

models. The matching process can benefit from any other external constraint imposed by the specific application.

Index Terms—Object reconstruction, complementary matching, depth buffer, virtual assemblage.
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1 INTRODUCTION

1.1 Related Work

UP to now, the application of pattern recognition and
stochastic analysis techniques in three-dimensional

computer graphics focuses on object recognition and
classification [11], [17], [21], [23], [3]. On the other hand,
almost no work has been conducted toward the identifica-
tion of complementary objects, i.e., objects that can be
assembled to form a new solid object. This need arises in
various scientific areas, such as computer-aided manufac-
turing or archaeological applications where the problem is
to reconstruct a complete object from its parts.

In most cases, the role of a computer in object

reconstruction is limited to data acquisition, fragment

visualization, and manipulation, while the actual recon-

struction process is supervised by the scientist [9], [8]. In the

two-dimensional case, where the complementary matching

is reduced to the “jigsaw puzzle” problem, many solutions

have been proposed, as in [7], [6]. To our knowledge, the

number of automatic or semiautomatic reconstruction

algorithms in three dimensions developed up to now is

extremely limited, while the techniques used are applicable

only to specific types of object fragments. Some of these

algorithms focus on the reconstruction of thin walled object

fragments (like pots) and rely either on classification of

certain qualitative features of the fragments, as in [19], or

comparison of the broken surface boundary curves to match

and align the pieces [22]. The first method assumes that the

structure of the final, complete object is known a priori and

fragments have to be extensively labeled and categorized

beforehand. The second addresses the problem as boundary

curve matching instead of full surface matching and,
therefore, cannot handle arbitrary object parts.

Matching algorithms that operate on partial data in three
dimensions mostly deal with the fusion of surface segments
of the same object rather than perform a complementary
matching and are frequently intended for mesh generation
from partial scans, as in [16], [5]. In [1], Barequet and Sharir
introduced a robust and noise tolerant method for the
matching of point clouds representing the shell or the
volume of partially identical objects. This method is based
on the geometric hashing paradigm [18], [7] and requires
that user-defined “footprints” are calculated for or assigned
to the evenly distributed points of the data sets.

1.2 Method Overview

The general method proposed in this paper matches and
glues fragments or parts belonging to an object, one against
one, using only their surface geometry, assuming no
information about the fragments’ origin, data set sampling
distribution or the final model to be reconstructed. The
intrinsic geometric features of 3D objects also have been
successfully used in algorithms for other applications like
object recognition, as in [3] and [23]. The basic concept in
our method is that, given two 3D models, the best fit is
likely to occur at their relative pose, which minimizes the
point-by-point distance between the mutually visible faces
of the objects. For this reason, we introduce and calculate an
error measure of the complementary matching between two
object parts at a given relative pose, based on this point-by-
point distance.

This matching error is minimized, employing a standard
global optimization scheme, to determine the relative
positioning of the two fragments that corresponds to their
best complementary fit. During the automated assembly, it
is assumed that the two object parts can be rigidly attached
to one another without having to penetrate each other’s
surface. For instance, the method cannot be used to connect
two links of a chain.

In contrast to [22], our method can handle arbitrary
objects. It overcomes the constraint of [1] regarding the even
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spatial distribution of the input samples or the regular
topology assumed by [16], by efficiently resampling the
data during the evaluation of the matching cost function. In
demanding application areas, such as the assembling of
archaeological finds and simulation, where highly detailed
models are used, the regularity of the data sets cannot be
guaranteed as the objects are densely sampled only in
highly detailed areas, in order to reduce the processing time
and storage requirements.

We should note that the proposed scheme may be used
without modifications for all types of three-dimensional
surface or volume data (analytical surfaces, polygonal
models, or voxelized objects). However, the implementation
of the algorithm is optimized for polygonal data as in this
way it takes advantage of commonly available graphics
hardware to significantly accelerate the matching.

Due to its generality, our algorithm can work indepen-
dently, disregarding the morphology and structure of the
object being reconstructed. If additional information is
available, e.g., material attributes or structure features, it
can be incorporated in the method in the form of a set of
constraints, to improve the overall performance.

The paper is organized in the following manner: In
Section 2, the formulation of the problem is presented.
Section 3 provides a theoretical analysis of the proposed
matching error and also discusses its practical calculation.
Section 4 explains how the matching error is used in
conjunction with a global optimization method to solve the
reconstruction problem in the general case, while, in
Section 5, we discuss the adaptation of the algorithm to
some cases of constrained matching. Finally, in Section 6
some representative examples and applications of the
method are provided and commented.

2 PARAMETERIZATION OF THE PROBLEM

For two arbitrary objects, assuming a fixed distance
between their initial centroids �O1, �O2, one needs to define
six degrees of freedom, namely, �1, ’1, �1 and �2, ’2, �2, in
order for each model to be able to rotate arbitrarily around
the three axes of its local orthogonal reference system
(Fig. 1). Rotation angles are mapped to ½0; 2��. For the
comparison of the two objects, surface distances are
measured along the direction of the line O1O2 crossing the
two centroids. In addition to the rotations, the models can

slide relative to each other on a separating plane (p)
perpendicular to O1O2. This relative displacement can be
effectively modeled by the translation of one of the objects
by ~t ¼ ðx1; y1; 0Þ, assuming that objects are expressed with
regard to local coordinate systems aligned with (p) as in
Fig. 1. The models are allowed to move at most by �10% of
the maximum diameter of both in each direction.

According to the paragraph above, we apply one
geometric transformation sequence to each object, M1 and
M2, respectively. These transformation sequences are the
combination of a set of rotations, followed by a translation
for the first object. Let Rê;a be the rotation transformation
around an axis ê by a radians and T~V the translation
transformation. If we represent each transformation as a
4� 4 homogeneous matrix, as is common in computer
graphics and vision [4], a composite transformation can be
written as a matrix multiplication. Assuming object points
are represented as column vectors, the transformation
sequences are:

M1 ¼ T~t0Rz;�1Rx;�1Ry;’1

and

M2 ¼ Rz;�2Rx;�2Ry;’2

(note that the leftmost matrices are applied last). In fact, if
the transformations are applied in this order, the rotation
Rz;�2 is redundant and the second transformation sequence
can be reduced to M2 ¼ Rx;�2Ry;’2.

As a result, a seven-degrees-of-freedom bounded con-
tinuous search space S7 	 <7 is defined. The set of relative
pose parameters form a variable vector in S7:

�! ¼ ½�1; ’1; �1; x1; y1; �2; ’2�:

3 THE CALCULATION OF THE MATCHING ERROR

In this section, the derivation of the matching error "dð�!Þ is
discussed. Our matching method is based on the geometric
fitting of two objects, trying to imitate the way a human
would attempt to piece together two objects, if no other
evidence about the objects is available. The error at every
positioning instance �! is related to the point by point
distance of the facing sides of the two objects. For simplicity
of presentation, the error calculation for a two-dimensional
case will be first derived and then the discussion will be
extended to three dimensions.

3.1 The Two-Dimensional Case

Let us consider the two-dimensional continuous case shown
in Fig. 2. Each object, or rather flat shape, rotates around its
center. Additionally, the first object can slide along a path
perpendicular to the line crossing the two centers. This way,
the vector �! is reduced to ½�1; y1; �2�. The mutually visible
profiles of the facing sides of the two objects are represented
as h1ðu; �!Þ and h2ðu; �!Þ. The parameter u runs along a
separating reference line ðpÞ perpendicular to the line
crossing the two objects’ centers. From Fig. 3a, the distance
dðu; �!Þ between two facing points h1ðu; �!Þ and h2ðu; �!Þ on
the object contours can be expressed with regard to the
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Fig. 1. Relative pose of the two meshes during the matching process.



respective distances d1ðu; �!Þ and d2ðu; �!Þ of these points

from the reference line ðpÞ:

dðu; �!Þ ¼ d1ðu; �!Þ þ d2ðu; �!Þ: ð1Þ

A naı̈ve approach to the error estimation would be to

integrate the distance dðu; �!Þ over the interval Sð�!Þ of ðpÞ
where the traces of the contours overlap (Fig. 2). However,

this integration would lead to a dependence of the error on

the relative distance between the two objects’ centers.

Worse, for a certain set of pose parameters at which the

object contours would match perfectly, the error estimate

could be large due to an improper initial placement of the

objects. One such example is presented in Fig. 4, where in

case (a) the error is larger than the one in case (b), although

only case (a) is a perfect match.
In order to eliminate the dependence of the error on the

absolute distance between the contours, we could subtract

from each measured distance the minimum distance dminð�!Þ
between the two profiles of the shapes:

dðu; �!Þ ¼ d1ðu; �!Þ þ d2ðu; �!Þ � dminð�!Þ: ð2Þ

The corresponding error for a given set of angles �! ¼ ½�1; �2�
would be:

"dð�!Þ ¼
1

l

Z
Sð�!Þ

d1ðu; �!Þ þ d2ðu; �!Þð Þdu� dminð�!Þ; ð3Þ

where l the length of Sð�!Þ.
Although this new error estimation is theoretically

correct, it is ill-conditioned, as small changes in the object

contours (caused, for example, by the presence of even the

slightest jittering of contour points during sampling) affect

the minimum distance dminð�!Þ, which in turn significantly

alters the estimated error. To minimize the effect of slight

alterations in data to "dð�!Þ, a different approach is necessary

which compares the slopes of the contours, i.e., the

derivatives of h1ðu; �!Þ and h2ðu; �!Þ instead of the actual

contour distances. It can be easily seen (Fig. 3b) that

matching parts have opposite slopes in corresponding

points. The derivatives @h1ðu;�!Þ
@u and @h2ðu;�!Þ

@u are related to the

derivatives of the object contour distances from the

reference line ðpÞ as follows (Fig. 3):

@h1ðu; �!Þ
@u

¼ � @d1ðu; �!Þ
@u

and
@h2ðu; �!Þ
@u

¼ � @d2ðu; �!Þ
@u

: ð4Þ

In other words, the distances d1ðu; �!Þ and d2ðu; �!Þ are

differentiated with respect to u (Fig. 3b) and set the error

"dð�!Þ as:
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Fig. 2. The simplified two-dimensional case of the complementary

matching problem.

Fig. 4. Naive error estimation in the two-dimensional case. The

estimated error for two perfectly matching surfaces (a) can be greater

than that for two mismatched surfaces (b).

Fig. 3. Distance estimation in the two-dimensional case. (a) Distance of

two object contours relative to a reference plane ðpÞ. (b) The derivatives

of the object contours.



"dð�!Þ ¼
1

l

Z
Sð�!Þ

@d1ðu; �!Þ
@u

þ @d2ðu; �!Þ
@u

����
����du: ð5Þ

Let one of two nearly perfectly matching surfaces be

distorted by a noise spike of length �l and amplitude �d. The

limit lim�l!0�ed of the additional error �ed as calculated in

(5) is zero as �l decreases, in contrast to lim�l!0�ed ¼ �d
when the direct distance error of (3) is used. The new

matching error behaves very well under the presence of

noise or mismatching segments as any differences have

local effect.
Fig. 5 plots the matching error "dð�!Þ for the objects

shown in Fig. 2 against �! ¼ ½�1; 0; �2�. Angles are sampled at

2� intervals. Local minima of the matching error are dense

for nontrivial objects, therefore the probability of escaping

them using a global optimization method, like simulated

annealing, should be high at the beginning of the error

minimization process.

3.2 The Three-Dimensional Case

To extend the matching error calculation to three-dimen-

sional space, we need to compute the fitting error as an

integral over the slope at every point of the facing surfaces

of the two objects. Let @hðu;v;�!Þ
@u and @hðu;v;�!Þ

@v be the partial

derivatives of an object surface hðu; v; �!Þ with regard to two

parameters u and v, respectively, where u, v define a plane

ðpÞ perpendicular to the line crossing the two object centers

(Fig. 6). Similar to the two-dimensional case, @hðu;v;�!Þ@u and
@hðu;v;�!Þ
@v are related to the partial derivatives @dðu;v;�!Þ@u , @dðu;v;�!Þ@v

of the surface distance dðu; v; �!Þ of an object from ðpÞ given a

pose vector �!:

@hðu; v; �!Þ
@u

¼ � @dðu; v; �!Þ
@u

;
@hðu; v; �!Þ

@v
¼ � @dðu; v; �!Þ

@v
: ð6Þ

Therefore, by extending the definition of the matching

error given in (5) to three dimensions, we get:

"dð�!Þ ¼
1

As

Z Z
Sð�!Þ

@d1ðu; v; �!Þ
@u

þ @d2ðu; v; �!Þ
@u

����
����

�

þ @d1ðu; v; �!Þ
@v

þ @d2ðu; v; �!Þ
@v

����
����
�
dS;

ð7Þ

where

�! ¼ ½�1; ’1; �1; x1; y1; �2; ’2�;

As is the area of Sð�!Þ and Sð�!Þ is the collection of surfaces
defined as the intersection of the projections of the two
objects S1ð�!Þ and S2ð�!Þ on the plane (p), (Fig. 6):

Sð�!Þ ¼ S1ð�!Þ [ S2ð�!Þ: ð8Þ

Note that the quantities

@d1ðu; v; �!Þ
@u

þ @d2ðu; v; �!Þ
@u

and

@d1ðu; v; �!Þ
@v

þ @d2ðu; v; �!Þ
@v

are both zero in the case of a point by point perfect match.

3.3 Discrete Error Calculation

For the discretization of the matching error given in (7), the
distance between each object and the reference plane (p) is
uniformly sampled over the areas S1ð�!Þ and S2ð�!Þ for the
first and second object, respectively. This process can be
thought of as casting parallel rays from equidistant
locations ði; jÞ, i ¼ 1; . . . ; Nu, j ¼ 1; . . . ; Nv, lying on a grid
on (p), toward both objects. Distances d1ði; jÞ, d2ði; jÞ are the
distances measured between the ray’s origin ði; jÞ on (p) and
the point of the first hit of the ray on each object (Fig. 7). The
intersection of the object projection areas Sð�!Þ consists of all
the locations on plane (p) from which cast rays have
successfully intersected both objects.

If the partial derivatives

@d1ðu; v; �!Þ
@u

;
@d1ðu; v; �!Þ

@v
;
@d2ðu; v; �!Þ

@u
;
@d2ðu; v; �!Þ

@v
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Fig. 5. The matching error for the objects of Fig. 2 with respect to the

rotation of the parts and fixed displacement.
Fig. 6. The error calculation in the 3D case of the matching algorithm.



of (7) are approximated by forward differences

�ud1ði; jÞ ¼ d1ðiþ 1; jÞ � d1ði; jÞ;
�vd1ði; jÞ ¼ d1ði; jþ 1Þ � d1ði; jÞ;
�ud2ði; jÞ ¼ d2ðiþ 1; jÞ � d2ði; jÞ;
�vd2ði; jÞ ¼ d2ði; jþ 1Þ � d2ði; jÞ

and the integration over the area Sð�!Þ is replaced by

summation, then the error becomes:

"d ffi ed ¼
1

NS

X
ði;jÞ2Sð�!Þ

ð �ud1ði; jÞ þ�ud2ði; jÞj j þ �vd1ði; jÞ þ�vd2ði; jÞj jÞ;
ð9Þ

where

Sð�!Þ ¼fði; jÞ : i ¼ 1; . . . ; Nu; j ¼ 1; . . . ; Nv; d1ði; jÞ 6¼ 1;
d1ðiþ 1; jÞ 6¼ 1; ; d1ði; jþ 1Þ 6¼ 1g
\ fði; jÞ : i ¼ 1; . . . ; Nu; j ¼ 1; . . . ; Nv; d2ði; jÞ 6¼ 1;
d2ðiþ 1; jÞ 6¼ 1; ; d2ði; jþ 1Þ 6¼ 1g;

allowing only noninfinite values of the forward differences,

and NS is the cardinality of the set Sð�!Þ.

3.4 Error Calculation using the Z-Buffer

In most applications where object matching is needed,

objects are arbitrarily shaped (e.g., scanned fragments) and

cannot be approximated by analytical surfaces. In such

cases, as in almost every modern three-dimensional

computer graphics application, the most common object

representation used is the polygonal mesh. The distance

measurement described above incorporates ray casting and

intersection tests between every ray cast and every polygon

in order to find the intersection point which is closer to the

ray’s origin; this is a time-consuming calculation in

nonconvex arbitrary polyhedra.
On the other hand, efficient computer graphics techni-

ques have been developed for the calculation of the distance

between the view plane and each visible point on the object

surfaces, during the rendering phase. The most widely used

algorithm is the z-buffer [2], [4], which is today hardwired

even in low-cost home computer graphics boards. The
z-buffer algorithm produces a two-dimensional buffer (the

z-buffer or depth-buffer), whose dimensions match those of

the view plane. Each value of the z-buffer represents the
distance between a pixel on the view plane and the

corresponding point on the object, which is closest to the
view plane. Assuming that the view plane is parallel to the

XY plane, the z-buffer values are the Z coordinates of the

object points closest to the view plane.
In our method, we consider the reference plane (p) as

the view plane and exploit the z-buffer algorithm (and

widely available hardware) for the distance calculations.
Each object is rendered separately, in a right-handed

coordinate system, with the Z-axis pointing toward (p)

(Fig. 8). The resolution Nu �Nv at which the objects are
rendered, represents the coarseness of the discretization

approximation (which equals the resolution of the z-
buffer and the grid mentioned in Scetion 3.3). As a result,

we obtain two z-buffers, Z1 and Z2, for each rotation

vector �!, whose elements correspond to the distances
between the reference plane (p) and the surface points on

objects 1 and 2, respectively. It can be verified from Fig. 8

that the following relations exist between the distance
functions and the z-buffers:

d1ði; jÞ ¼ Z1ði; jÞ; ð10aÞ

d2ði; jÞ ¼ Z2ðNu � i; jÞ: ð10bÞ

The inversion in the i indices of (10b) is due to the fact that
the X-axes of the two local rendering coordinate systems are
looking in opposite directions.

To put together all the above analysis, the practical
algorithm for the estimation of the matching error is as
follows:

Initialization

1. Calculate the maximum diameter R of the two object
parts h1, h2.

2. Move the parts so that their centers �O1 and �O2 reside
on the coordinate system origin and rotate them so
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Fig. 7. Discrete error calculation. Object distances from the reference

plane (p) are estimated using ray casting. Fig. 8. The use of z-buffer to calculate the point-to-point distances for the

matching. The z-buffers for the two objects are shown at the bottom left

and right.



that the X axes of their local reference frame points in
opposite directions:

h01 ¼ Ry;��2T� ~O1
h1; h

0
2 ¼ Ry;�2

T� ~O2
h2:

3. Prepare the rendering hardware for the acquisition
of the Nu �Nv sized depth images and restrict the
viewable area to an fR � fR � fR sized cube centered
at the coordinate system origin, where fR ¼ 1:3 � R.

Matching error estimation for a pose �!

1. Perform the rigid transformation that defines the
given pose �!

h001 ¼ Tðx1;y1;0ÞRz;�1Rx;�1Ry;’1h
0
1; h

00
2 ¼ Rx;�2Ry;’2h

0
2:

2. Render the transformed object parts one at a time
and store the correponding z-buffer values,

Z1ði; jÞ; Z2ði; jÞ:

3. Calculate the matching error using (9) and (10):

"d ¼
1

NS

X
ði;jÞ2Sð�!Þ

ð �uZ1ði; jÞ þ�uZ2ðNu � i; jÞj j

þ �vZ1ði; jÞ þ�vZ2ðNu � i; jÞj jÞ:

The performance of this error estimation technique is

extremely high, as all the rendering and z-buffer creation

procedures are supported by hardware graphics accelera-

tors, leading to a large number of error calculations per

second (approximately 45 matching error values per

second, for 64� 64 z-buffer resolution, 16-bit accuracy,

and 10,000 polygons on a Pentium II at 400MHz).

4 MINIMIZATION OF THE MATCHING ERROR

For the determination of the best fit between the objects, we

need to find the global matching error. In case of an

exhaustive search for the global minimum over the search

space, assuming even a coarse quantization (increments of

2� for each angle and 0.5 percent for the displacement),

more than 75 � 1012 of error values should be estimated,

rendering the approach impractical. Since the exact form of

the cost function to be minimized is not known, only a

probabilistic cost minimization scheme can be applied.
Any global optimization method can be applied, assum-

ing that the cost function to minimize is the matching error

"dð�!Þ. The minimization is performed over a seven-degrees-

of-freedom search space, the variable vector being

�! ¼ ½�1; ’1; �1; x1; y1; �2; ’2�:

Rotation angles ð�1; ’1; �1; �2; ’2Þ are wrapped around in the

range ½0; 2��, while x1 and y1 are allowed values in

½�0:1 � r; 0:1 � r�, where r is the maximum diameter of both

objects.
In our implementation, we adopted a variation of the

Simulated Annealing algorithm (SA) [10], the Enhanced

Simulated Annealing (ESA) by Siarry et al. [20]. In brief, the

ESA algorithm is as follows:

1. Estimate a good initial temperature T ¼ T0.
2. Initialize the parameter vector �! and set �!best ¼ �!.
3. Calculate the initial value of the cost function "d ¼ "0.

Set "best ¼ "d.
4. Randomly perturb the parameter vector �! by �! to get a

new vector �! and calculate the new value of the cost
function enew.

5. If �" ¼ "new � "d < 0:
Accept the new vector: �! ¼ �!new and " ¼ "new.
If " < "best, set: �!best ¼ �! and "best ¼ "d.

Else if �" � 0:
Accept the new vector (�! ¼ �!new and " ¼ "new) with
probability expð��"

T Þ.
6. Repeat Steps 4-5, until equilibrium is reached at

temperature T .
7. Lower the temperature:

Calculate the average and minimum error values
"minðT Þ and "aveðT Þ at T .

Adjust the temperature decrease rate
a ¼ maxðminð"minðT Þ"aveðT Þ; amaxÞ; aminÞ.

Set T ¼ a � T .
8. Repeat Steps 4-7 until T reaches a predetermined

minimum value Tstop, Nfail subsequent temperature
states fail to produce a new "best value or the maximum
number of iterations Niter is reached.

9. Return �!best.

The above algorithm modifies the well-known SA method

by introducing an adaptive cooling scheme, a search space

partitioning strategy, and a Monte Carlo method for estimat-

ing the initial and final temperature (convergence control

parameters).
The adaptive cooling scheme adjusts the rate of decrease

a of the temperature according to the success rate of the

previous temperature stage (Step 7). a is initially set to

amin ¼ 0:6 while amax ¼ 0:9. The initial (higher) temperature

parameter T0 and the lower one Tmin are derived from the

Metropolis [12] criterion by performing a fixed number of

transitions of increasing cost (50 in our implementation)

and setting:

T0 ¼ ��"ðuphillÞave

lnðP0Þ
Tmin ¼ � 10�6 ��"ðuphillÞave þ 10�8

lnð10�6 � P0 þ 10�8Þ ;

where P0 is the desired initial acceptance probability for

uphill transitions and �"ðuphillÞave is the average increase of the

measured cost. The suggested value for P0 is 0.5. The

minimum-cost parameter vector of this stage is used for the

initialization of the annealing process.
An important feature of the ESA technique is the search

space partitioning. Instead of perturbing all variables

!1; . . .!N of �! 2 SN , the transition affects only M of them,

M << N . At each transition, theM variables are selected by

the “least frequently used first” rule. M is fixed throughout

the execution of the algorithm. After many experiments, we
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concluded that the best performance for this application
was achieved with M ¼ 2.

In most implementations, it is assumed that equilibrium
is reached at a temperature T if a predefined number
Nattempted of perturbations has been attempted at T or a
predefined number Naccepted of perturbed vectors has been
accepted at T . In our implementation, we use both criteria
for thermal equilibrium and we set Nattempted ¼ 80 and
Naccepted ¼ 8.

For the stopping criterion, we set Nfail ¼ 4 and
Niter ¼ 2; 000.

Note that the above parameter values were selected after
exhaustive experimentation with many test models to
achieve as fast convergence as possible. This parameter
set worked seamlessly and performed well for all categories
of test objects, so no case-specific parameterization was
needed. For more ESA implementation details, the inter-
ested reader should refer to the original ESA paper.

5 CONSTRAINED MATCHING

Up to this point, we have assumed that both objects are
allowed to freely rotate around all three axes, resulting in an
unconstrained matching scheme, applicable to all three-
dimensional object-matching problems. However, in many
applications, additional information is available about the
objects to be combined. Such information includes material
attributes, a priori knowledge of the final reconstructed
object shape, or constraints in the object matching direc-
tions. These features can be used in two ways: to bias the
final result or act as restrictive constraints, reducing the
search space of the matching algorithm, as will be shown in
this section.

5.1 Biasing Constraints

In the case of biasing constraints, the matching process is
identical to the one described in the previous sections, but
an additional weight is added to the estimated error. For
example, certain materials (such as marble or wood) are
characterized by veins, which define a “material axis” [15].
The degree of coincidence of the material axes of the two
fragments can be used as an additional factor in the error
estimation, biasing the result toward pose vectors �! at
which the material axes are parallel. The error expression
would then become:

e ¼ 0ded þ 0matð1� ~a1 � ~a2j jÞ: ð11Þ

In (11) ed is the matching error from (9), ~a1 and ~a2 are the
material axes for each object and 0d; 0mat are weights
depending on the amount of bias desired. Usually, 0d is
close to unit, while 0mat ¼ ð1� 0dÞ. In cases of reconstruc-
tion of archaeological data with marked marble vein
directions, material likeness is an important parameter of
the matching process, so 0d and 0mat must be roughly equal.

Regardless of the contribution of the material factor

to the matching error, 0d can be modified to incorporate

a bias toward tighter fitting between the surfaces to be

matched. Setting 0d ¼ minðAS1;AS2Þ
AS

, where AS1; AS2 are the

measured areas of the projected surfaces of h1; h2 on (p),

the optimization scheme favors solutions of maximum

surface overlap between the objects. Notice that, if one

of the projected areas S1 or S2 falls completely inside

the other, 0d ¼ 1 and tends to infinity as the two traces

get separated. This particular rule for 0d in conjunction

with the directionally restrictive constraint discussed in

Section 5.2.2 has been successfully applied in the

reconstruction of scanned objects.

5.2 Restrictive Constraints

Restrictive constraints are used to increase the effectiveness
of the matching process by reducing the search space. This
is accomplished either by reducing the number of degrees
of freedom of the objects or by limiting the range of
acceptable values for each state variable.

5.2.1 The Material Axis as a Restrictive Constraint

Let us examine the use of the material axis as a restrictive
constraint. The demand we can impose on the matching
problem is for the two material axes to be parallel at all
object poses. The objects should rotate freely around the
material axis direction but any other rotation applied to
them has to be equal for both parts, in order for the material
axes vectors to remain collinear. The matching algorithm
can be modified in the following way (Fig. 9):

a. An original orientation of the two objects is selected,
which meets the material axes collinearity constraint.
For simplicity, the objects are rotated so that the
material axes initially coincide with the Z-axes of the
two local coordinate systems.

b. Rotation angles �1, ’1, and �2; ’2 are locked
together so that the material axes remain collinear
during this rotations. More specifically, �2 ¼ ��1
and ’2 ¼ ’1 þ �.

c. The order of the transformation applied to the first
object is altered so that the rotation around Z-axis is
performed first: M1 ¼ Tðx1;y1;0ÞRx;�1Ry;’1Rz;�1

By locking the X and Y rotations for the two parts, we
reduce the search space dimension by two, resulting in the
variable vector
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Fig. 9. The use of material axis as a restrictive matching constraint.

Objects are shown after rotations around all three axes have been

performed.



�! ¼ ½�1; ’1; �1; x1; y1; �2; ’2� ¼ �; ’; �; x1; y1;��; ’þ �½ �:

Of course, the material axis is not always measured accurately
and, therefore, it could be useful to add a small jitter to the �
and ’ angles, to allow for a small random deviation from the
collinearity condition (�5� is usually enough).

5.2.2 Fracture Direction Constraints

Perhaps the most useful constraint, particularly suitable for
archaeological fragment reconstruction applications, is the
enforcement of a “matching direction” for each object part
during the matching process.

Let ~v1m and ~v2n;m ¼ 1; . . . ;M; n ¼ 1; . . . ; N , be a set of
direction vectors for the first and second fragment,
respectively, that correspond to the average normal
vectors of the fractured faces of each object part. M and
N are the total number of marked directions on the first
and the second object part. The search for the best fit
should ideally be restricted to those poses at which ~v1m
and ~v2n are opposite, modifying the rotation vector �! to
½0; 0; �1; x1; y10; 0; 0�, assuming that ~v1m and ~v2n are aligned
with the Z-axes. However, since in realistic applications,
directions ~v1m and ~v2n are not likely to be accurately
measured, a small deviation from this alignment should
be permitted, resulting in the original form for the
parameter vector: �! ¼ ½�1; ’1; �1; x1; y1; �2; ’2�. Note that
this time angles �1; ’1; �2, and ’2 are limited to a small
range ½�a; a�, where a is the directional tolerance which
depends on the measurement accuracy and is usually less
than 10�. Fig. 10 presents the object part configuration for
the fracture direction constrained matching.

Taking into account the necessary modifications of the
reconstruction method, the algorithm for the direction-
constrained matching can be summarized in the following
steps:

a. Given the direction vectors ~v1m and ~v2n and the
directional tolerance values a1m, a2n for the first and
second object part, respectively, align each direction
vector with the Z-axis of the local coordinate system
of the object part and choose the axial tolerance
a ¼ maxa1m; a2n.

b. Maximize the area Sð�!Þ by shifting appropriately the
first object along the X and Y axes. This can be done

by cross-correlating the area of the projections S1ð�!Þ
and S2ð�!Þ on the reference plane (p) and finding the
position of maximum cross-correlation.

c. Perform the matching error optimization on the set
of variables

f�1; ’1; �1; x1; y1; �2; ’2g; �1; 11; �2; ’2 2 ½�2; 2�:

d. Repeat Steps (a) and (b) and (c) for every combina-
tion of ~v1m and ~v2n, m ¼ 1; . . . ;M; n ¼ 1; . . . ; N .

Fig. 11 summarizes the type of constrained matching
paradigm to use, according to what constraints are
available. Notice that the material axis acts as a restrictive
constraint when applied alone, but is used as a biasing
constrained if it is combined with another constraint. The
bias toward maximum surface can be combined with both
the unconstrained and constrained matching cases.

6 TESTS AND RESULTS

We have tested our reconstruction method on many object
models, both computer generated and 3D-digitized models
of real object fragments, in various levels of polygonal mesh
detail (64-25,000 polygons per fragment). Multiple tests
were performed with the fragments of all our evaluation
objects and the matching error was estimated using z-buffer
resolutions between 64� 64 and 256� 256 pixels, depend-
ing on the level of accuracy desired. Larger z-buffer
resolutions correspond to longer error estimation time.
We found that a good trade-off between accuracy and
execution time was achieved for a 128� 128 rendering
resolution.

6.1 Unconstrained Matching Results

For the unconstrained matching of object parts, we have
used both computer generated and digitized polygonal
objects. Simple computer generated models with many
similar faces (e.g., cubes, pyramids, etc.) have been avoided,
as there is more than one combination of their parts that is
an acceptable match.

Fig. 12 displays a list of representative examples of object
parts that have been tested with the unconstrained matching
algorithm. The first column shows the initial arbitrary (but

PAPAIOANNOU ET AL.: RECONSTRUCTION OF THREE-DIMENSIONAL OBJECTS THROUGH MATCHING OF THEIR PARTS 121

Fig. 10. The object fragments setup for the direction-constrained

reconstruction.

Fig. 11. The combination chart of the various constraints discussed in

this paper.



fixed) position of the parts. The second and third columns
present the correct solution �!corr and the most frequent
erroneous result �!mfe, respectively, (�5% RMS deviation
from �!corr or �!mfe is allowed). The average measured error is
included in both cases.

Examples (a) and (b) demonstrate the effectiveness of the
algorithm for both smooth and irregular surfaces. The third
example shows a computer-generated ring with cavities
where a small ball is supposed to fit. In this example, we
deliberately chose the worst initial pose where the ball is
tested against the void space inside the ring. All experi-
ments resulted in the ball fitting precisely in one of the eight
cavities.

In the following three examples, we applied the
unconstrained matching algorithm on digitized object
fragments. The fragments in case (d) belong to a 42� 22�
11 cm ornamental building block. Many minor fragments
have been chipped off because of the breaking impact, so
the fractured facets cannot perfectly match. The same thing
has happened to the fragments of examples (e) and (f)
where clay pot fragments and pieces of an 11� 14� 18 cm

plaster head model have been used. Actually, in application
areas like archaeology, a matching algorithm is expected to
operate on fragments in bad condition. The tests run with
these fragments, as well as with other similar ones, show
that the unconstrained matching favors “trivial solutions”
in the case of real objects. Such solutions are relative poses
that minimize the matching error between large, smooth
portions of the fragments. Although far from the desired
results, these trivial solutions are theoretically correct. The
unconstrained method has no knowledge to discard a side-
by-side match as in case (e). Note also that the probability
for a minimization algorithm to converge to a trivial
solution becomes higher as the corresponding sides of the
fragments become larger and smoother.

Fortunately, real objects frequently have attributes that can
be exploited to aid the reconstruction process and, therefore,
constrained reconstruction is more suitable for them.

6.2 Constrained Matching Results

For the constrained matching tests, we have used the
direction-constrained algorithm. The method has been
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Fig. 12. Reconstructiom examples for the unconstrained matching case.



tested mostly with real objects. The directional constraint
significantly increases the performance for all types of
objects. With the use of an appropriate criterion to restrict
the matching to certain directions, the trivial solutions of the
unconstrained matching are avoided. Such a criterion is
suggested in [14] where arbitrary meshes are segmented
into crude compact facets and the algorithm marks as
candidate directions for matching the average normal
vectors of the most irregular facets. This algorithm is well
suited for 3D scanned objects and performs particularly
well on types of fragments encountered in archaeological
applications.

Fig. 13 presents some examples of directional matching.
As the pose parameters are initialized according to one or
more predefined candidate directions, the initial pose
column of Fig. 12 has no meaning here. The candidate
directions were selected using the criterion described above,
except in case (a), where a single direction was manually
selected.

The first example demonstrates the improvement of the
matching performance for the parts of Fig. 12b where
unconstrained matching was used. In the second example,
two to three directions were marked for each fragment,
corresponding to the fractured and decorated facets. The
facets with the curved designs produced high-matching
errors when examined against other selected sides because
they are not complementary with them. As a result, the
range of solutions was restricted to those involving the two
fractured sides. Most tests were successful although some
times the optimization algorithm failed to reach the global
error minimum.

For example, in (c), (d), and (e), we used fragments from
the same class of flat-surfaced objects but with no

decorations. We had the fractured surfaces of these plaster

scale models manually punctured and then smoothed out in

many places to introduce external error in the process. The

pieces in example (d) and (e) come from the same object and

we tried to match the smaller ones against the large piece.

The smallest piece (case e) failed to produce a correct

reconstruction, in most cases, as the fracture was badly

distorted with respect to its size. In fact, these two

fragments had inadequate support even for manual gluing.
In Figs. 13f and 13g, the matching and gluing between

relatively flat pot fragments is demonstrated. The fragments

of case (f) are the same we used in the example (e) of Fig. 12.

This time, the inner (smooth) walls of the pot are not

selected for matching and, therefore, the trivial solutions are

avoided. The results for case (f) are very interesting as both

solutions presented here are almost perfect. We had to

manually test the actual fragments in order to conclude on

which one was the desired solution.
Overall, we were satisfied with the results and we were

encouraged to apply our complementary matching method

to problems where more than one target object must be

reconstructed from multiple parts. Such a method is

proposed in [13] where the direction-constrained matching

and the direction selection criterion of [14] are used for the

matching error evaluation between each pair of fragments.

Additionally, the maximization of surface overlap and the

material axis are used as biasing constraints. A real-time

genetic optimization algorithm generates the final part

combinations based on the precalculated matching errors

and a small but expandable set of rules.
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Fig. 13. Representative examples of object reconstruction using the directional constraint and the maximum surface overlap bias.



7 CONCLUSIONS AND FUTURE WORK

An innovative method has been presented for the combina-

tion of three-dimensional object parts to reconstruct the

original objects. The matching algorithm is based on

geometric features of the fragments, but it can also exploit

additional knowledge; it can therefore be combined with

other classification methods. The core of the method is a

matching error estimation algorithm based on the distance

between the facing fragment sides. When a global optimiza-

tion algorithm is used with this error estimator as a cost

function, the resulting method locates a relative pose of the

two object parts at which there is a good complementary

match. Our method takes advantage of widely available

low-cost hardware to accelerate the process.
We are currently working on the combination of the

method proposed here with other, feature-based methods,

like the ones listed in the introduction section, in order to

investigate the possibility of a reliable and fully automatic

object reconstruction procedure.
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