
Real-time Volume Editing on Low-power Virtual Reality Devices

Iordanis Evangelou1 a, Anastasios Gkaravelis1 b and Georgios Papaioannou c

1Department of Informatics, Athens University of Economics and Business, Athens, Greece
{iordanise@aueb.gr, agkar@aueb.gr, gepap@aueb.gr

Keywords: virtual reality, ray casting, volume graphics.

Abstract: The advent of consumer-grade, low-power, untethered virtual reality devices has spurred the creation of numer-
ous applications, with important implications to training, socialisation, education and entertainment. However,
such devices are typically based on modified mobile architectures and processing units, offering limited capa-
bilities in terms of geometry and shading throughput, compared to their desktop counterparts. In this work we
provide insights on how to implement two combined and particularly challenging tasks on such a platform,
those of real-time volume editing and physically-based rendering. We implement and showcase our techniques
in the context of a virtual sculpting edutainment application, intended for mass deployment at a virtual reality
exhibition centre.

1 INTRODUCTION

Today, consumer virtual reality (VR) headsets offer
unprecedented image clarity and movement freedom.
Coupled with vision-assisted spatial tracking and nat-
ural, 6-DoF interaction, these untethered, standalone
VR systems provide an incredibly immersive VR ex-
perience in a multitude of applications, ranging from
VR games and social networking to training and sim-
ulation applications. Despite the fact that modern VR
headsets are more than capable to display 3D con-
tent at the very demanding frame rates and latency
required for comfortable immersive stereo, their low
power consumption and reduced weight constraints
limit the devices’ capabilities in terms of geome-
try and shading throughput, when compared to their
desktop counterparts. This means that high-fidelity
graphics pipelines that rely on ray tracing, or intensive
geometry processing methods cannot be implemented
efficiently in the underlying architectures and limited
hardware resources of typical untethered VR systems.
In most cases, applications are limited to a few hun-
dreds of textured and directly lit polygons and even
forgo dynamic lighting in many cases, to keep ren-
dering passes down to a minimum and pixel shaders
simple. Going beyond the typical rendering tasks in
such a setting, is quite challenging, not only due to
the hardware limitations of standalone VR systems,

a https://orcid.org/0000-0003-4556-390X
b https://orcid.org/0000-0002-9673-2462
c https://orcid.org/0000-0003-4774-0746

but also due to the necessary rigidity of typical game
engines used for the application development.

In our case, we wanted to perform real-time edit-
ing of solid geometry and the respective display of
the result using physically admissible shading. As
explained next, such an application requires an in-
tensive geometry processing stage and results in too
many primitives for a low-power rendering platform
to handle. This paper presents the methodological
approach used to perform real-time volumetric edit-
ing and display, combining techniques such as mul-
tiview voxelisation, image-domain ray marching and
stochastic visibility checks. The resulting application,
intended for mass deployment at a virtual reality ex-
hibition centre, was developed in Unity with custom
shaders and was able to run at 68 frames per second
on an Oculus Quest 2.

1.1 The Target Application

The goal was to implement an immersive application,
where a solid block of material could be carved and
shaped in a fully dynamic and therefore unpredictable
manner, to create a new form, like sculpting and clay
modelling in the physical world (Figure 1). The user
has access to a selection of electric rotary and impact
tools with various drill bits as well as a ”fill gun” that
deposits modelling paste on the sculpture for additive
editing and corrections. The tools can be exchanged
by picking them up from a workbench near the model
using one of the 6-DoF controllers. The removal or

Figure 1: Screenshots from the virtual sculpting VR appli-
cation.

deposition of material is performed by touching the
drill bit or nozzle of the virtual tool onto the surface
of the sculpture (Figure 1 - bottom).

The virtual sculpting application provides three
sculpting modes: expert free-form modelling, con-
strained sculpting and creative mode. In the first
mode, the user starts with a lump of rock, which must
shape with the available tools. The second mode is
the constrained sculpting mode, which is intended
for novice users and enforces an indestructible solid
boundary. In essence, the user ”reveals” a predefined
figure by chipping away material with the given tools.
The third mode is the creative mode, where the pro-
cess starts from an already sculpted shape, which the
user can modify freely to personalise or transform it
into something entirely different.

After a predetermined time, the user is signalled
to stop editing and the resulting model is exported
as a watertight polygonal model for 3D printing in
STL format. The user is given a unique mnemonic vi-
sual identifier (badge) after the completion of the VR
sculpting session that can be used for requesting the
model to be send via email or ordering the 3D printout
of the model at a dedicated booth. The VR applica-
tion packs and uploads the STL model on a dedicated

server for this task.
Apart from the typical technical requirements for

high and stable framerate and responsiveness valid
for all VR applications, the particular edutainment
installation had to be able to run on standalone VR
headsets for the following reasons. First, the appli-
cation should be deployed in multiple devices simul-
taneously in a large space, in order to accommodate
multiple visitors. Second the deployment should be
cable-free for the safety of the visitors and the easy ac-
cess of the exhibition personnel to assist the users. Fi-
nally, device redundancy, maintenance, replacement
and sanitisation introduce logistic constraints on the
size, weight and compactness of the chosen solution.

1.2 Technical Challenges

The implementation of the volume editing and render-
ing for the standalone VR system is especially chal-
lenging and required an innovative approach to vol-
ume editing and display, as explained in the following
sections.

Solid modelling at such a fine-grained and un-
structured manner can only be performed on volumet-
ric representations, either single-level or hierarchical.
To provide ground for enough detail on the sculpted
figures, but also reduce discretisation artifacts during
rendering at a typical working distance, a volume rep-
resentation of no less than 1283 voxels must be used.

At each frame, collision of the tool’s active surface
with the volume elements must be detected to both al-
low and block the tool from penetrating the boundary
surface of the edited volume and mark the affected
elements for modification. To allow inter-operation
with the collision and event system of the game en-
gine, this task must be performed on the CPU and
take as little time as possible. Note that in the partic-
ular volume editing application, an additional geom-
etry processing task must take place: that of volume
island elimination. As the user progressively removes
material from the solid model, at some point bits may
end up levitating in the air, unsupported and discon-
nected from the main body of the model. These re-
gions must be identified and their elements removed.
This step can be performed by a graph-processing al-
gorithm, which however is quite expensive, especially
at the required volume resolution.

After all necessary changes are made to the volu-
metric representation, the modified boundary surface
of the model must be rendered. Typically this entails
one of two approaches: either conversion to triangu-
lar mesh and rasterisation using the pipeline provided
by the game engine, or direct volume visualisation
using ray marching. The first means that the vol-

ume must be triangulated, either globally or locally
at the region of change, using a variant of the march-
ing cubes algorithm (Lorensen and Cline, 1987). Al-
though local updates are efficient, updating vertex and
element buffers of variable length is not. Further-
more, the total number of triangles resulting from the
volumetric model can be several hundred thousands,
which renders this option inapplicable to untethered
VR. Triangulation becomes even more problematic,
since the triangulated meshes must be smoothed and
vertex normals estimated in the updated regions and
their boundaries.

On the other hand, direct volume rendering using
ray marching can be performed in a more control-
lable manner, with the option to trade visual fidelity
for speed in order to maintain the desired frame rate.
However, it implies two things: first, the rendering
pipeline of the game engine must be circumvented
for the particular game object and second, the vol-
ume representation must be resident on GPU memory
and constantly updated. The latter proved to be an es-
pecially heavy task in Unity, which does not provide
access to texture subloading functionality. The cus-
tom rendering for the sculpted volume translates to
implementing all shading with custom shaders. Fur-
thermore, since the game engine is agnostic to the vol-
umetric representation, interaction with light sources,
including shadows, cannot use the rendering passes
of the former. A positive side-effect of this is that
custom lighting allows us to model more realistic
light-volume interaction, more suitable for the often
translucent materials used.

2 RELATED WORK

We present here a brief overview of prior art relevant
to the tasks at hand in our application, i.e. geometry
representation for dynamic updates and visualisation
approaches for such data. We deem a review of the
general volume editing and related VR applications
out of the scope of our discussion, since we focus on
the specific case of untethered VR, where prior art is
scarce.
Volumetric representations. Since direct editing of
geometric meshes with arbitrary operations can lead
to heavy re-tesselation and topology changes, a tri-
angulated mesh representation is typically avoided in
digital sculpting applications. Even more so in our
case, where the computing resources of an untethered
VR system are limited. On the other hand, volumetric
representations offer a generic and fast approach to
represent arbitrary shapes, at a user-controlled preci-
sion. Volumetric data, expressing the presence of the

geometric shape at a given spatial partition, can eas-
ily be accomplished using a uniform grid representa-
tion (Lagae and Dutré, 2008), which is an inexpensive
choice in terms of construction and update, but can
become prohibitively expensive on storage require-
ments. Alternatively, resorting to image-based regular
grids (Vardis et al., 2016; Karabassi et al., 1999) can
be lighter to maintain and equally fast to update on ev-
ery consecutive frame. Complexity of spatial queries
is constant on both of these structures but can induce
divergence if variable size lists of primitives are main-
tained for each voxel (for analytic computations), in-
stead of being treated as discretised boolean volume
presence (occupancy) indicators. To represent and
process larger and more detailed geometric shapes,
uniform grids can be hierarchically built. Hierarchi-
cal approaches include the popular Sparse voxel oc-
tree (Laine and Karras, 2010) and hierarchical irreg-
ular grids (Pérard-Gayot et al., 2017), but such meth-
ods are inapplicable to our case, since we not only
need per-frame updates of the data structure, but there
is also limited amount of memory bandwidth for data
representation.
Volume - ray intersection queries. Depending on
the voxel grid representation, ray traversal or march-
ing within a volume towards a potential hit cell
can be achieved either analytically (Amanatides and
Woo, 1987), exhaustively evaluating all possible ray
- cell hits along the footprint of a ray or, approxi-
mately using a digital differential analyzer (DDA) al-
gorithm (McGuire and Mara, 2014). Both approaches
can be adapted either for image-domain or world-
space ray traversal and also account for hierarchi-
cal representations, as in the Quadtree Displacement
Mapping image-space ray traversal (Drobot, 2010).
In our work, to minimise thread divergence within
fragment invocation, we employ a variant of the DDA
algorithm with a constant number of samples, since
the resolution of the volume is fixed, hence the worst
case traversal length.

Signed distance fields (SDFs) (Bloomenthal and
Wyvill, 1997) is another popular approach to quickly
traverse empty space in ray marching and represent
level sets of complex procedural shapes. A distance
field is a spatial function that reports the minimum
distance of a given point from the level set. The SDF
replaces the absolute distance with a signed one, indi-
cating the sidedness. This information can be used for
safely skipping empty space while traversing a vol-
ume, whose occupancy boundary can be considered a
discretised level set isosurface. It can also be used to
iteratively compute intersections with the isosurface.
We do not generate a full distance field for our model,
which would be required for empty space skipping,

since the volume is constantly updated and SDF com-
putation is rather expensive. However, we exploit a
generic algorithm to identify the closest intersection
point on the SDF, the sphere tracing (Hart, 1995), to
better approximate a smooth shading point and nor-
mal from a ray marching hit point (see Section 4.2).

3 VOLUME EDITING

The application provides a range of tools to the user in
order to perform two main tasks: a) carve and remove
material from the sculpted mass and b) deposit new
material over the edited geometry, to enable correc-
tions in a plausible manner. Volumetric editing occurs
at each application update iteration and at each update
cycle, the selected tool interacts with the shell of the
volumetric representation up to a small depth, using
either a spherical or rectangular cutter/filler. These
primitives are fast to analytically intersect with the
volumetric cells, but other shapes can also be inte-
grated, if required.

3.1 Collision Detection

Collision detection with the elements of the discre-
tised volume of fixed resolution can be done in lin-
ear time with respect to the intersected volume mass.
To allow for the detection of arbitrary overlaps be-
tween the sculpted volume and the tool tip primitive,
the cutter/filler primitive is transformed to the sculp-
ture’s local reference frame. The bounding volume
of the transformed primitive is computed and dis-
cretized at the granularity of the sculpted volume, and
each voxel of the transformed primitive bounding vol-
ume is checked for collision with the sculpted volume
voxel state. We perform this linear pass over the vol-
ume samples on the CPU, since multiple updates must
take place and feedback to the game logic has to be
provided, before updating the GPU-side representa-
tion, such as tool transformation freeze for penetra-
tion avoidance and controller force feedback.

3.2 Volume Representation

The representation of the solid’s volume requires its
content to be resident and updated in both the host
and the device side to properly visualise it. There-
fore, data transactions on every frame for a fixed bi-
nary grid (e.g. 1283 in our case) can cause redundant,
heavy updates and data transfer operations, since the
user is only interacting with a small volume parti-
tion near the sculpt surface. Inspired from the depth-
buffer-based voxelisation technique by (Karabassi

et al., 1999), to overcome this issue, instead of using a
voxel array for the volumetric data representation, we
model the binary grid using 3 two-dimensional arrays.
The cells of these arrays store the minimum and max-
imum ranges of the occupied field along each dimen-
sion (see Figure 2 - left). The editing operations are
then transformed from flipping the state of each bi-
nary voxel to, shrinking or widening the stored ranges
accordingly (see Figure 2 - middle). This reduces up-
date operation complexity and the memory require-
ments from cubic to quadratic with respect to the grid
resolution.

Implementation-wise, the range maps are com-
pacted in a single texture array, with one layer for
each major axis. Min/max ranges are stored nor-
malised with single-byte precision as a two-channel
texture, as all intersection computations are per-
formed in the local reference frame of a unit cube,
representing the effective working volume. Using a
single texture for both min/max values facilitates co-
herent texture access and checking of a ray marching
step with a single texture fetch (see Section 4.1).

The only drawback of this image-based volumet-
ric representation is that it cannot model every pos-
sible shape as it cannot represent internal cavities or
empty space in general that is not visible to at least
one axial projection. Due to the nature of the task
at hand though, this is not an issue in our applica-
tion, since all operations occur on the outer shell of
the sculpted volume, which is always visible in the
range maps.

3.3 Volume Initialisation

The application operates in three different modes: a)
free-form sculpting, starting from a roughly cut lump
of material, b) constrained sculpting, initialised as in
the first case and c) surface modification, where the
user processes an already formed shape. These modes
are presented to the user in an introductory screen, as
shown in Figure 3. Depending on the mode, the vol-
ume is initialised by extracting the 3 axial range map
pairs using an approach similar to the depth buffer
projection of (Karabassi et al., 1999). For modes (a)
and (b), a pre-modelled lump of stone is sampled and
used as the starting shape, whereas for mode (c), an
easy to modify figure is used. We deliberately chose
a nondescript toy model for this operation, since we
did not want the user to operate on and thus probably
deface a well-known historical figure.

Range maps are computed by a conservative soft-
ware triangle voxelisation on the CPU, i.e. switching
on all voxels intersected by the triangles, followed by
voxel projection on the range maps. This is available

Min/max range bu�ers

Quick marching step:
single bu�er pair checks

Nested, full marching step:
check all bu�er pairs

zmin bu�er

zmin bu�er

xmin bu�er

xmin bu�er
xmax bu�er

xmax bu�er

zmax bu�er

zmax bu�er

Image-based volume
representation

Image-space ray marching

Drill bit
e�ective

sphere

Range bu�er
volumetric editing

Figure 2: Image-based volume representation, editing and rendering via image-domain ray marching.

Expert (free-form) mode

Novice (constrained) mode

Shape modi�cation mode

Figure 3: The three editing modes.

as a Unity pre-processing plugin from within the ed-
itor. The initial range maps need not be recomputed
every time the application is initialised, so they are
saved as assets and packaged along with the rest of
the content.

3.4 Disconnected Part Elimination

As mentioned in Section 1.2, the application must be
able to recognise at run time parts that are discon-
nected from the main body and are not supported from
the ground and remove them. To handle this, we em-
ploy a flood fill algorithm, starting from the ground
voxels and traversing the grid upwards. First, we

transform the range maps into a binary voxel grid and
then traverse the volume. Voxels that were not vis-
ited during this process should be removed, by triv-
ially updating the range values at the corresponding
range maps. We update the contents of the original
range maps by traversing the valid intervals of each
coordinate and setting the new ranges based on the
minimum and maximum voxel coordinates marked as
visited.

We employ two additional modifications on this
step to maintain interactive frame rates at run time.
First, we assume that valid voxels appear only around
the 6-neighbourhood of the pivot voxel (axis-aligned
neighbours), instead of visiting all 26 adjacent vox-
els. This is a natural simplification in our case, since
exclusively diagonal connections would imply an un-
stable structure anyway. Second, we amortise the ex-
ecution of this operation over multiple frames by ex-
ploiting the coroutine programming pattern. This is
achieved through splitting the flood fill loop and dis-
tributing the task over multiple consecutive frames
until the sculpting volume has been completely pro-
cessed. We have experimentally set the coroutine
to yield at 100K flood fill iterations, that results in
a good balance between smooth runtime experience
and prompt removal of excess material.

3.5 Constrained Sculpting

In the constrained sculpting mode, which is intended
for novice users and children, a target shape is hidden
within the initial lump of material. The user grad-
ually removes material to reveal the intended form
within. To implement such a function, certain vox-
els should be specially marked as irremovable, so that
any editing operation refrains from altering their state

zmin bu�erxmin bu�er xmax bu�er zmax bu�er

Editable volume Irremovable
volume

Masked volume/range

Figure 4: Volumetric masking for constrained sculpting.
Additional range maps signify the axial ranges, where vox-
els cannot be modified.

(see Figure 4). In our image-based volume represen-
tation, this simply translates to using an additional set
of range maps, which comprise the masked volume
and are checked prior to modifying the intervals in the
primary range maps for a particular voxel projection.
The masking mechanism was straightforward to inte-
grate within the volume editing step at an insignificant
processing cost.

3.6 Geometry Export

The volume editing in our application case results in
a tangible output. Although we have no noteworthy
contribution to this stage, we present it here for com-
pleteness. When the editing session is concluded, the
image-based volumetric information is converted to a
mesh via an implementation of the Marching Cubes
method (Lorensen and Cline, 1987). The resulting
mesh is further smoothed out by applying two iter-
ations of a Laplacian smoothing kernel of one-voxel
radius at the neighbourhood of each vertex (Sorkine,
2005), and uploaded to a remote server in STL for-
mat for offline 3D printing. The particular filter size
removes discretisation artifacts but retains geometric
feature details.

4 VOLUME RENDERING

During rendering, the sculpted object is rasterised us-
ing the standard primitive shape of a unit cube, trans-
formed to take up the intended size and final position-
ing in space. However, we replace the standard game

engine’s forward pass fragment shader with a custom
one to perform all ray marching and lighting compu-
tations.

4.1 Ray Marching

As is typical in all modern rasterisation-based ray
marching applications, starting from the interpolated
object-space position of the (unit) cube at any given
fragment in the fragment shader, we form a ray
traversing the volume of the bounding cube inwards.
However, in our case, ray traversal occurs in the im-
age domain of the range maps, in a similar manner to
screen-space ray tracing (McGuire and Mara, 2014).
Normally, to evaluate each ray marching step, the oc-
cupancy (or density) of the voxel corresponding to
the ray sample would be checked and the ray traver-
sal terminated at a point between the occluded and
unoccluded step. In our case, for each ray step this
check would normally pertain to three texture fetches
and a range check with the min/max values stored
in the corresponding buffer cells on each major axis
projection. However, we take advantage of the ax-
ial separation of the projected geometry to efficiently
and conservatively traverse empty space with a single
fetch at each ray step. Instead of continually check-
ing all three range buffer pairs, we only perform the
ray traversal on the range map corresponding to the
axis most parallel to the user’s view direction (quick
marching step in Figure 2 - right). If a ray hit is de-
tected, only then we proceed to a second, nested ray
marching loop that checks the remaining two axial
range map pairs for intersection (full marching step
in Figure 2 - right). Practically, this means that the
inner ray marching loop will run for a very few ray
steps, which correspond to either the single final hit
(a hit must be confirmed by all axial range maps) or
partially occluded positions in at least one range map.
The ray marching terminates either when the ray sam-
ple is enclosed by all three range queries or when the
ray exits the unit cube, in which case the fragment is
discarded.

In terms of fragment shader implementation, since
conservative traversal in the current VR hardware can
induce unnecessary divergence due to the dimension
size, we opt for a fixed number of regular steps (128
in our case). The two-step ray traversal strategy de-
scribed above omits redundant memory accesses and
improves memory access coherence.

4.2 Surface Normals Estimation

The solid volume should be presented to the user as a
smooth surface, agnostic to the underline representa-

tion. Using a simple localised estimator for the nor-
mal vector at the ray intersection point (e.g. assuming
cubical voxels) would invariably result in an unnatu-
ral, blocky appearance and the resulting image would
be plagued by screen-space aliasing similar to the ef-
fect of texture minification. We attempt to address
both issues by introducing a low-overhead approxi-
mation of the local surface around the voxel hit point.
Specifically, we extract the occupied voxels in the 6-
neighbourhood around the hit point for which we as-
sume that they are represented by a blob implicit sur-
face of radius equal to half the voxel size. Then we
trace a ray offseted by half the voxel size backwards
along the original ray direction, and report the closest
hit xshading on the signed distance field (SDF) com-
posed by the smooth union of these voxels. Evalu-
ating the normal vector at that location typically re-
quires the computation of the SDF value on the lo-
cal neighbourhood. Since this operation can be costly
on the current hardware, we replace it with the lin-
ear combination of the direction vectors from each
occupied voxel vi in the 6-neighbourhood towards the
evaluated intersection point xshading, weighted by their
inverse square distance (Shepard, 1968):

n = normalize

(
6

∑
i=1

δi
xshading −vi

||xshading −vi||2

)
(1)

where δi is an indicator function with value 1 if the
voxel i is occupied and 0, otherwise.

4.3 Shadows and Surface Shading

With the ray intersection point and the normal esti-
mated, the surface shading can take place. To neu-
tralise the look of the sculpted surface, we assume a
Lambertian material with a procedural marble texture
using Perlin noise (Perlin, 1985) precomputed and
stored in a 3D texture buffer.

Due to the constantly updated geometry of the
sculpted volume and the changing orientation of the
subject (the sculpture can be rotated on the stool for
easier access), direct illumination and visibility must
be evaluated in real time, per fragment. However,
since we completely dispense with the regular for-
ward shading computations due to ray marching, we
cannot rely directly on any part of the game engine’s
computed values, such as the shadow map(s). There-
fore, for the computation of light source visibility
for the direct lighting, we perform a hybrid visibility
computation. First, for each shaded point, we do an
extra ray marching iteration, albeit with a small num-
ber of steps (10 in our case) towards the directional
light of the scene. The ray marching terminates at

Shadow cone

Shaded voxel hit

Ray marching
end point

Stochastic visibility

Shadow map
look up

Figure 5: Visibility determination for volumetric shadows.
Top: ray marching sample dispersion and visibility voting
to account for subsurface scattering. Bottom: The effect
of cone sample dispersion on shadow artifacts at oblique
angles. Highlighted areas show aliasing artifacts (bottom-
left) and how they are remedied (bottom-right).

the surface of the bounding cube. There, the shadow
map is invoked to determine the visibility for the rest
of the interval between the bounding box surface and
the emitter.

To account for the translucent appearance of typ-
ical sculpting materials, we modify the visibility es-
timation in two ways. First, instead of terminating
the shadow rays early, we allow the visibility term to
be a continuous parameter, corresponding to a piece-
wise constant absorption of the traversed material.
We initialise visibility with a maximum value of 1
and dampen it by a constant factor (0.7 in our case)
for each occupied sample encountered during the ray
marching loop. This is similar to modelling an ex-
ponential decay of the visibility factor according to
the portion of the volume blocking the queried sur-
face from the light source. Second, we offset the ray

samples away from the ray line within a tapered cone
whose apex corresponds to the farthest ray box inter-
section (see Figure 5 - top). This effectively intro-
duces some shadow softening imitating subtle sub-
surface scattering for voxels near the surface, while
leaving voxels in deep recesses unaffected. It also
helps suppress artifacts of the visibility transitions at
the discretised geometry at very oblique lighting an-
gles. The effect is demonstrated in Figure 5 - bottom.
The two cone radii correspond to 2× and 0.25× the
voxel side for the shaded point and the ray segment
terminus, respectively.

Finally, the indirect illumination component is
approximately reconstructed from the spherical har-
monics interpolated from the static light probe group
baked for the environment, as provided by the Unity
API.

5 RESULTS

We evaluate the performance of our method on an
Oculus Quest 2 VR headset. The application was
developed with Unity 2021.2.8 using the Oculus In-
tegration SDK 37.0. All performance measurement
were captured using the Oculus Developer Hub com-
panion software.

We ran tests of our system on two precomputed
volumes (see Figure 6) to stress the shader invocations
workloads and avoid trivial fragment evaluations as in
the case of the initial, bound-covering sculpting vol-
ume (see Section 3.3). Since the VR headset is con-
figured to operate at a consistent framerate of 13.8ms
per frame (72 frames per second), we report the eval-
uation metrics of our method relative to this target and
averaged over different orientations of the models.
Relative rendering step impact. For the volume ren-
dering (Section 4), both examples operate on aver-
age at a 93.5% of the optimal performance, running
at 14.7ms per frame (68 fps), which is an acceptable
level for a smooth experience. Omitting the SDF eval-
uation as described in Section 4.2 and directly pro-
cessing the local shading with the intersection normal
found from the closest voxel hit, the performance is
sustained at the maximum level, with negligible im-
pact. We also confirmed that by retaining the ray
marching mechanism and SDF evaluation but, com-
pletely omitting the local shading (Section 4.3), still
maintains the maximum level of performance.
Ray marching performance. For the same exper-
imental setup, we compared the performance of ray
marching with the deferred full comparison of ray
samples described in Section 4 with that of a full ray
marching loop, without the differed evaluation of co-

Figure 6: Two precombuted volume exemplars rendered
with our proposed method, which were used for perfor-
mance evaluation and fine-tuning.

ordinates. In the second case, we have registered a
performance degradation of up to 17% (60 fps). As a
final experiment, we also attempted to double the grid
resolution (see Section 4), to improve the granularity
and visual quality of the volume surface. The image-
based volume representation, due to the quadratic de-
pendence on volume resolution, instead of cubic for
spatial grids, does not render the increase prohibitive.
The performance hit is however noticeable, being on
average 31% (50 fps) for both example volumes. As
a result, for the currently presented method and hard-
ware specification, this resolution is marginally at-
tainable, but not recommended in terms of user ex-
perience and comfort.
Temporal amortisation of material removal.
Lastly, in Section 3.4, we proposed the use of
coroutine-based execution for amortising the com-
putational cost of removing volumetric parts that are
disconnected from the main sculpt body. As it is a
computationally heavy method, naively executing
this step on every frame, results in a reduction of
the overall performance on the application’s main
experience to 76ms per frame (13 fps) on average for
both models, which is prohibitive. Due to the high
cost, performing the full volume cleanup at once, but
at a slower rate, is also problematic, since it results in
disturbing framerate stuttering.

6 CONCLUSION

In this work, we proposed the mechanics to allow vol-
ume editing and rendering, two very demanding and
intertwined tasks to run in real-time on untethered VR
hardware. We described the necessary modifications,
based on a careful selection and adaptation of estab-
lished computer graphics methods and ideas and eval-
uated them in the context of a fully-functional and
mass-deployed virtual sculpting application.

The presented methodology is suitable for volume
editing applications similar to ours (e.g. 3D mod-

elling). However, the generalised application of the
image-based volume representation to volumes of ar-
bitrary complexity, and especially when these should
include internal cavities or very occluded parts, is
challenging and requires a multi-layer approach to
handle correctly (Vasilakis et al., 2020).

Finally, an interesting approach, which requires
further research and experimentation, would be to
completely replace the underlying data structure with
a truncated Signed Distance Field evaluator and re-
spective data structure, in the spirit of VDB (Museth,
2013), along with the appropriate operators for edit-
ing the volume. This could greatly enhance the visual
quality, minimise aliasing problems introduced by the
discretization of the edited volume and potentially al-
low for arbitrary surface interactions. However, such
an approach would require careful optimisation, in or-
der to strike a balance between image quality and ac-
ceptable performance for an untethered VR device.

ACKNOWLEDGEMENTS
This work was funded by the Foundation of the
Hellenic World, Greece. Many thanks to Dimitrios
Christopoulos, for his constructive comments and
thorough application testing.

REFERENCES
Amanatides, J. and Woo, A. (1987). A fast voxel traversal

algorithm for ray tracing. Proceedings of EuroGraph-
ics, 87.

Bloomenthal, J. and Wyvill, B. (1997). Introduction to Im-
plicit Surfaces. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA.

Drobot, M. (2010). Quadtree displacement mapping with
height blending. In Engel, W., editor, GPU Pro - Ad-
vanced Rendering Techniques, pages 117–138. A K
Peters / Taylor & Francis.

Hart, J. (1995). Sphere tracing: A geometric method for the
antialiased ray tracing of implicit surfaces. The Visual
Computer, 12.

Karabassi, E.-A., Papaioannou, G., and Theoharis, T.
(1999). A fast depth-buffer-based voxelization algo-
rithm. Journal of Graphics Tools, 4(4):5–10.

Lagae, A. and Dutré, P. (2008). Compact, fast and robust
grids for ray tracing. In ACM SIGGRAPH 2008 Talks,
SIGGRAPH ’08, New York, NY, USA. Association
for Computing Machinery.

Laine, S. and Karras, T. (2010). Efficient sparse voxel oc-
trees. In Proceedings of the 2010 ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games,
I3D ’10, page 55–63, New York, NY, USA. Associa-
tion for Computing Machinery.

Lorensen, W. E. and Cline, H. E. (1987). Marching cubes:
A high resolution 3d surface construction algorithm.
In Proceedings of the 14th Annual Conference on
Computer Graphics and Interactive Techniques, SIG-
GRAPH ’87, page 163–169, New York, NY, USA. As-
sociation for Computing Machinery.

McGuire, M. and Mara, M. (2014). Efficient GPU screen-
space ray tracing. Journal of Computer Graphics
Techniques (JCGT), 3(4):73–85.

Museth, K. (2013). Vdb: High-resolution sparse volumes
with dynamic topology. ACM Trans. Graph., 32(3).

Perlin, K. (1985). An image synthesizer. SIGGRAPH Com-
put. Graph., 19(3):287–296.

Pérard-Gayot, A., Kalojanov, J., and Slusallek, P. (2017).
Gpu ray tracing using irregular grids. Computer
Graphics Forum, 36(2):477–486.

Shepard, D. (1968). A two-dimensional interpolation func-
tion for irregularly-spaced data. In Proceedings of the
1968 23rd ACM National Conference, ACM ’68, page
517–524, New York, NY, USA. Association for Com-
puting Machinery.

Sorkine, O. (2005). Laplacian Mesh Processing. In
Chrysanthou, Y. and Magnor, M., editors, Eurograph-
ics 2005 - State of the Art Reports. The Eurographics
Association.

Vardis, K., Vasilakis, A. A., and Papaioannou, G. (2016). A
multiview and multilayer approach for interactive ray
tracing. In Proceedings of the 20th ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games,
I3D ’16, page 171–178, New York, NY, USA. Asso-
ciation for Computing Machinery.

Vasilakis, A. A., Vardis, K., and Papaioannou, G. (2020). A
survey of multifragment rendering. Computer Graph-
ics Forum, 39(2):623–642.

