
EUROGRAPHICS 2020/ M. Romero and B. Sousa Santos Education Paper

Rayground: An Online Educational Tool for Ray Tracing

N. Vitsas1, A. Gkaravelis1, A. A. Vasilakis1 , K. Vardis1 , G. Papaioannou1

1Department of Informatics, Athens University of Economics and Business, Greece

Abstract
In this paper, we present Rayground; an online, interactive education tool for richer in-class teaching and gradual self-study,
which provides a convenient introduction into practical ray tracing through a standard shader-based programming interface.
Setting up a basic ray tracing framework via modern graphics APIs, such as DirectX 12 and Vulkan, results in complex and
verbose code that can be intimidating even for very competent students. On the other hand, Rayground aims to demystify ray
tracing fundamentals, by providing a well-defined WebGL-based programmable graphics pipeline of configurable distinct ray
tracing stages coupled with a simple scene description format. An extensive discussion is further offered describing how both
undergraduate and postgraduate computer graphics theoretical lectures and laboratory sessions can be enhanced by our work,
to achieve a broad understanding of the underlying concepts. Rayground is open, cross-platform, and available to everyone.

CCS Concepts
• Social and professional topics → Computer science education; • Computing methodologies → Ray tracing; • Software
and its engineering → Software prototyping;

1. Introduction

While ray tracing is one of the most common teaching subjects for
both introductory and advanced computer graphics courses from
around the world [BWF17], specialised educational tools to im-
prove the learning curve on this topic in a way that attracts and
engages students are still missing. Typical undergraduate graphics
syllabi, build the structure of the courses around the rasterization
pipeline and in the best case, devote a limited number of lectures
to explain the basic paradigm of ray tracing, usually as the last part
of the course. However, in recent years, ray tracing has gained sig-
nificant momentum as a compelling alternative for achieving both
the desired level of photorealism in production and interactive ren-
dering and as the means to study shading algorithms [KVBB∗19].
The advent of mass-produced, consumer grade hardware with ray
tracing acceleration capabilities has significantly boosted the inter-
est of the graphics community and has led to the introduction of
related methods to interactive applications, thus demonstrating its
wide applicability to students. Unfortunately, this turn of interest
to ray-tracing-based techniques is not sufficiently backed by proper
educational tools to assist students in becoming familiar with the
basic concepts and help them become practically engaged in build-
ing their own projects. Moreover, modern low-level graphics APIs,
either dedicated to ray tracing like NVIDIA OptiX [PBD∗10] or
supporting it, such as Microsoft DirectX 12 [WM19] and Khronos
Group Vulkan [Sub18], pose high entry barriers to students and re-
quire a very daunting and long learning process, riddled with many
distracting technicalities.

The World Wide Web is undoubtedly the medium with the
biggest global outreach. The sandboxed environment in modern
Web browsers offers one of the best platforms for the deploy-
ment of educational tools. Web-based applications like Jupyter
Notebook [KRKP∗16] have revolutionised interactive data science
and scientific computing across many programming languages by
giving the ability to edit, execute and preview code from the
browser. Following this trend, computer graphics and visualisa-
tion have greatly benefited from similar solutions [MKRE16]. Cur-
rently, hardware accelerated computer graphics on the Web are
only possible through the WebGL W3C standards. Aside from the
fact that these are fairly low level APIs, there is no functional-
ity exposed that accommodates ray tracing solutions. Web-based
API solutions like the BabylonJS [CRLR14] and Three.js [Cab10]
frameworks are very well designed libraries that make graphics
programming easier by taking care of low-level details. However,
these frameworks focus on game/application development making
them too abstract to facilitate learning about the underlying prin-
ciples of computer graphics. Last but not least, ShaderToy [JQ14]
is a well-known and highly successful online tool for creating and
sharing fragment shaders through WebGL, used both for learning
and teaching 3D computer graphics. However, these solutions have
been explicitly designed for rasterization-based development leav-
ing no room for ray tracing experimental prototyping.

We introduce Rayground, an interactive education tool for richer
in-class teaching and gradual self-study that provides a convenient
introduction into ray tracing programming. Rayground abstracts
the functionality of the underlying ray tracing stages to an extent

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

https://orcid.org/0000-0001-6895-3324
https://orcid.org/0000-0003-2282-4644
https://orcid.org/0000-0003-4774-0746


Vitsas et al. / Rayground: An Online Educational Tool for Ray Tracing

that still preserves the main concepts taught in a computer graphics
course as well as eases the development of advanced visual effects
in student projects. This work aims to demystify ray tracing funda-
mentals while relying on the established GLSL shading language
for code development and the underlying WebGL pipeline for its
hidden execution model. It is intended for students who are al-
ready familiar with the basics of computer graphics theory (geome-
try representation, transformations, basic shading, etc.) and shader-
based programming. It has not been designed and developed to be
a complete replacement of teaching computer graphics with mod-
ern shader-based programming, e.g. OpenGL/WebGL [Ang17], but
rather as a complementary educational resource that harmoniously
enriches the teaching environment. Rayground does not rely on any
browser plugins and thus runs on any platform that has a modern
standards compliant browser.

2. Related Work

Teaching computer graphics can be challenging due their depen-
dence on a wide range of theoretical knowledge and practical skills,
such as mathematics, physics and programming. As such, vari-
ous approaches to teaching introductory computer graphics have
been documented in the literature over the years in order to trans-
form teaching from a passive knowledge transmission to a more
active and engaging process. For example, in-class interactive il-
lustrations [SÅAM17] and rapid exercises [WD15] could result in a
more effective understanding of the course material and the under-
lying mathematics. While the theoretical goals of the main course
in computer graphics remain largely unchanged, graphics software
technology has significantly evolved to support the tremendous ad-
vances in hardware [Ang17].

In today’s typical computer graphics syllabi, most subjects are
presented through the rasterization pipeline [RME14], which is
both approximate by nature and limited due to its strictly isolated
local computations, making topics like visibility determination for
light sources and environment sampling more complex to intro-
duce. Ideally, shifting the practical example implementation to ray
tracing would facilitate better presentation of topics such as para-
metric, procedural and analytic geometry visualisation, including
constructive solid geometry operations and volume graphics. Al-
though ray tracing is one of the most common teaching subjects for
both introductory and advanced computer graphics courses from
around the world [BWF17], Ray tracing in one weekend book se-
ries [Shi19] is the only valuable resource available to help novice
students start coding the very basics. On the other hand, a myr-
iad of education solutions have been developed by the academia
for teaching the traditional rasterization pipeline paradigm, using
shader-based programming.

Learning computer graphics techniques through plugin devel-
opment has multiple advantages: it allows for very focused, self-
contained, independent exercises, it enforces modularity and fa-
cilitates code reusability. Fink et al. [FWW12] presented a syl-
labus for an introductory computer graphics course using Java
that emphasises the use of programmable shaders, while teach-
ing rasterisation-related algorithms. Shaders are implemented as
classes and interact with the software rasteriser pipeline through
polymorphism, in order to help novice students adopt the mod-

ern approach of shader-based programming patterns. Reina et
al. [RME14] designed a GPU-accelerated educational framework
that enables students to write code targeting modern OpenGL,
exclusively. Each assignment is developed as a plug-in for this
framework. In a similar fashion, Andujar et al. developed GL-
socket [ACFV18], a flexible plugin-based C++ framework that of-
fers four types of modules depending on their main purpose and
the subset of methods they override including Effect, Draw, Render
and Action.

A project-based learning direction can provide a constructive and
motivational learning platform for computer graphics [Rom13]. Pa-
pagiannakis et al. [PPGT14] introduced glGA, a simple, thin-layer,
open-source framework that curbs the computer graphics complex-
ity by easily allowing students to grasp the basics through four sim-
ple examples and six sample assignments. Driven by this trend,
the FUSEE [MG14] and bRenderer [BSP17] educational render-
ing frameworks hide non-graphics-related functionality to an extent
that still allows students to easily grasp the concepts and techniques
being taught.

Several computer graphics courses have moved to a Web-based
educational programming environment in order to keep students
with very different backgrounds engaged [FP13], by shifting the
focus from low-level OpenGL API to object-oriented 3D graphics
frameworks [AB15, RT19]. From a teaching perspective, WebGL
offers a number of attractive features [Ang17] including among
others, multi-platform support, easy integration with other Web
APIs and strong student familiarity with Web technology.

Following ShaderToy’s design [JQ14], Toisoul et al. [TRK17]
introduced ShaderLabFramework, an integrated desktop develop-
ment environment for a fast, programmable shading pipeline on a
comprehensive lab exercise for undergraduate students. While two
GPU ray tracing tasks were included in their course, they can only
handle simple procedural objects that are easy to describe inside a
fragment shader.

3. The Online Platform

Rayground is an online integrated development environment (IDE)
for interactive demonstration and/or prototyping of ray tracing al-
gorithms. Rayground, hosted at https://rayground.com, is free for
everyone, on any platform that has a WebGL2-compliant browser
(no special plugins are required). In general, the user has the ability
to create any number of new projects from scratch or copy an exist-
ing one from a variety of ray tracing projects made available from
other users. Since Rayground IDE is web-based and online, users
can work on it from anywhere, anytime.

The graphical user interface of Rayground is designed to have
two discrete parts, the preview window and the shader editor
(Fig. 1), similar to the layout of ShaderToy [JQ14], which many
shader developers are already familiar with. Visual feedback is in-
teractively provided in the WebGL rendering context of the preview
canvas, while the user performs live source code modifications.

Rayground follows a programmable GPU-accelerated ray-
tracing pipeline (Sec. 3.1) in order to give developers direct and
flexible control of five ray tracing stages through a simple, high-
level shader-based programming model (Sec. 3.2). Thus, the shader

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

https://rayground.com


Vitsas et al. / Rayground: An Online Educational Tool for Ray Tracing

Figure 1: Left: The Rayground interface, with the preview window and the shader editor, showing the Generate stage. Middle and Right: Hit
and Miss event shaders for the same project, where the Cornell Box scene is rendered using a simple path tracer described in Sec. 3.3.

editor consists of five tabs, corresponding to five customisable
shader stages. A detailed documentation of the Rayground’s pro-
gramming interface is available on-site, while a summary of the
basic functions and variables exposed by the Rayground API are
accessible via the editor (see ‘?’ tab in Fig. 1). The documentation,
coupled with the many demo and tutorial projects, eases the way of
newcomers and promotes self-study.

3.1. Ray Tracing Pipeline

At the core of Rayground there is a traditional ray tracing image
synthesis pipeline, with several programmable stages via event han-
dling shaders. It was designed with the aim to help users gradually
understand how a ray tracer works, without getting distracted by the
particular implementation of the framework or platform-specific
characteristics. Since ray tracing is now tightly integrated into mod-
ern real-time rendering APIs [PBD∗10,Sub18,WM19], we follow a
similar programming model. Rayground’s pipeline has five distinct
configurable stages, namely Scene, Generate, Hit, Miss and Post
Process, which are explained below, focusing on function rather
than implementation.

The geometric objects of the scene are initially specified in the
input Scene declaration stage. These objects are used to build ray
intersection acceleration data structures, which in our case, are not
programmable. Primary rays, which, in the simplest case corre-
spond to a virtual camera, are generated and submitted for intersec-
tion in the Generate stage. Depending on the intersection results,
execution switches to the closest Hit or Miss stage. Both events can
generate a new ray which, in turn, may be intersected with the scene
to trigger new events.

Users are provided with several built-in and user-controlled
properties that ease the data transmission between events (Sec. 3.2).
For each iteration of the pipeline, or frame, a pixel colour is com-
puted and blended with the previous values stored in an Accumula-
tion Buffer. All code segments execute in parallel for each pixel of
the Canvas, i.e. the preview window and, in every frame, the exe-
cuted code directly corresponds to the one iteration event, i.e. one
ray path. The intermediate image is finally filtered through a Post
Process stage, a common step prior to image presentation, handy
for tone mapping and filtering operations. A graphical illustration
of the pipeline is shown in Figure 2.

3.2. Application Programming Interface (API)

Thr Rayground API is implemented using the WebGL2 standard,
supporting shader programming via GLSL, thus providing a con-
venient and familiar code development interface. The user is en-
couraged to use built-in GLSL functions (e.g. dot, cross) and types
(e.g. vec4, mat4). However, any use of the standard input and
output variables of the GLSL programmable pipeline stages (e.g.
gl_FragCoord) as well as samplers (e.g. sampler2D) may result in
undefined behaviour and should be avoided. While certain func-
tionality is common to all stages, there are also stage-specific input
and output variables, which are described below in more detail. The
basic functionality of Rayground API is listed in Table 1.

A ray is defined with an origin point and a direction by setting
the rg_RayOrigin and rg_RayDirection variables respectively. The
ray is marked as active when RG_ACTIVE_RAY_FLAG is set at
the fourth coordinate of the rg_RayOrigin vector. Note that the
recursive ray shooting of each pixel can be terminated either by
exceeding the maximum ray path (defined at the previous stage)
or by submitting an inactive ray in any of Generate, Hit or Miss
stages. The term ray depth, accessible by rg_Depth, is used to in-
dicate the number of rays that have been shot recursively along a
ray path. A maximum intersection distance is also required and is
set using the fourth component of rg_RayDirection. The constant
value RG_RAY_MAX_DISTANCE can be used instead, in order to
use an unbounded ray. Subsequent stages depend on those output
values and the user must be careful to initialise them for all pix-
els and all paths. Neglecting to do so, can result in undefined be-
haviour. The user can optionally add a payload to the ray via the
rg_Payload0 variable. This is a data structure that is used for re-
laying data between different stages. Last, rg_Accumulation car-
ries the final colour of the ray, where the alpha channel holds the
blending factor. Upon ray termination or after the maximum ray re-
cursion is reached, the final ray colour is combined with the results
from the previous frames in rg_AccumulatedImage, using additive
blending. By manipulating the blending factor on the alpha channel
of the ray colour, different results can be achieved such as simple
value replacement or averaging of the values over all frames.

Scene stage. Specifying the geometry of a scene is one of the most
basic tasks related to 3D visualisation. Rayground uses a simple
custom JSON format, which is easy to manage and extend. A valid
scene description contains settings and objects entities. The set-

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.


