
GLOBAL ILLUMINATION USING IMPERFECT VOLUMES

Pavlos Mavridis , Georgios Papaioannou
Department of Informatics, Athens University of Economics & Business, Greece

pmavridis@aueb.gr, gepap@aueb.gr

Keywords: Real-Time Global Illumination, Spherical Harmonics, Voxelization

Abstract: This paper introduces the concept of imperfect volumes, a fast one-pass point-based voxelization algorithm,
and presents its applications to the global illumination problem. As often noted,diffuse indirect illumination
has the characteristics of a low frequency function, consisting of smoothgradations. We exploit this by
performing the indirect lighting computations on a rough approximation of the scene, the imperfect volume.
The scene is converted on the fly to a dense point cloud, and each point isdirectly rendered to a volume texture,
marking the corresponding voxel as occupied. A framebuffer reprojection scheme ensures that voxels visible
to the main camera will get more points. Ray-marching is then used to compute the ambient occlusion or the
indirect illumination of each voxel, and the results are stored using spherical harmonics. We demonstrate that
the errors introduced by the imperfections in the volume are small and thatour method maintains a high frame
rate on scenes with high geometric complexity.

1 INTRODUCTION

In computer graphics the goal of global illumination
algorithms is to produce convincing images of an arti-
ficial world. Given a scene description, including the
geometry, surface properties and light source descrip-
tions, they simulate the complex interactions of the
light with the world, like diffuse and specular inter-
reflections, in order to generate realistic and accurate
images. Such accuracy is desired for architectural vi-
sualization, feature film production and even for real-
time applications, but is often omitted due to the high
cost associated with the calculation of global illumi-
nation effects.

High quality global illumination at interactive
speed is still an unsolved problem for large and dy-
namic scenes. In this paper we propose a method that
produces realistic images of diffuse, dynamic envi-
ronments in real time, by estimating the diffuse in-
direct light transport at discrete locations in the envi-
ronment and applying the results on the scene geom-
etry. To do so, we introduce theimperfect volume, a
rough approximation of the scene, storing occupancy
and lighting information in a uniform grid data struc-

ture. The way this volume is constructed ensures that
visible surfaces will get a nearly perfect voxelization,
through a frame buffer reprojection scheme, while the
rest of the scene may contain inaccuracies, like miss-
ing voxels. We demonstrate that the low frequency
nature of the diffuse indirect illumination tends to
mask the introduced imperfections, while the perfor-
mance gains from such an approximation are substan-
tial.

Our main contributions include:

• An approximate representation of the scene, the
imperfect volume, facilitating the calculations of
global illumination effects in real-time.

• A method to reconstruct the irradiance of the
scene surfaces by sampling the radiance stored in
the volume, avoiding bias from self intersections.

• An analysis on the influenceimperfect volumes
have on the resulting illumination.

We demonstrate that our method achieves interactive
speed on complex, fully dynamic scenes, even on
mainstream graphics hardware.



2 PREVIOUS WORK

Instant radiosity methods, introduced by Keller
(Keller, 1997), approximate the indirect illumination
of a scene using a set ofVirtual Point Lights (VPLs).
A number of photons are traced into the scene and
VPLs are created at surface hit points, then the scene
is rendered, as lit by each VPL. The major cost of this
method is the calculation of shadows from a poten-
tially large number of point lights. Lightcuts (Wal-
ter et al., 2005) reduce the number of the required
shadow queries by clustering the VPLs in groups, but
the performance is still far from real time.

Reflective shadow maps (Dachsbacher and Stam-
minger, 2005)(Dachsbacher and Stamminger, 2006)
consider the pixels of a shadow map as VPLs, but the
contribution of these lights is gathered without taking
scene occlusion into account. To achieve interactive
frame rates, screen space interpolation is required and
the method is limited to the first bounce of indirect il-
lumination. Imperfect shadow maps (ISM) (Ritschel
et al., 2008) use a point based representation of the
scene to efficiently render extremely rough approxi-
mations of the shadow maps for all the VPLs in one
pass. They achieve interactive frame rates but indirect
shadows are smoothed out considerably by the imper-
fections and the low resolution of the shadow maps.
The concept of ISMs is similar to our work, but our
method has some advantages, as detailed in section
4.1, like much better scalability with the final image
resolution.

Micro-Rendering (Ritschel et al., 2009a) is an effi-
cient method to perform final gathering, by rasterizing
a point based representation of the scene from many
different viewpoints in parallel. The method gives ac-
curate results but achieves interactive frame rates only
in relatively simple scenes.

Photon mapping (Jensen, 1996) traces photons
from the light sources into the scene and stores them
in a k-d tree and in a second pass the indirect illu-
mination of visible surface points is approximated by
gathering the k nearest photons. McGuire (McGuire
and Luebke, 2009) computes the first bounce of the
photons using rasterization on the GPU, continues the
photon tracing on the CPU for the rest of the bounces
and finally scatters the illumination from the photons
using the GPU. Since part of the photon tracing still
runs on the CPU, a large number of parallel cores are
required to achieve interactive frame-rates.

Directional occlusion (Ritschel et al., 2009b) ex-
tends previous methods for screen space ambient oc-
clusion calculation (Shanmugam and Arikan, 2007)
and introduces a method to approximate the first indi-
rect diffuse bounce of the light by only using informa-

tion in the 2D frame buffer. This method has a very
low computational cost but the resulting illumination
is hardly accurate since it depends on the projection
of the visible objects on the screen.

The concept of interpolating indirect illumination
from a cache was introduced by (Ward et al., 1988).
Accurate irradiance estimates are computed using ray
tracing on a few surface points (irradiance points) and
for the remaining ones fast interpolation is used. Ra-
diance caching (Ǩrivánek et al., 2005) extends the
irradiance cache to store and interpolate a radiance
representation of the indirect illumination instead of
irradiance, using spherical harmonics. This method
needs fewer samples in the cache, and can handle
specular surfaces. Wang (Wang et al., 2009) presents
a method to calculate the radiance sample points in
advance and implements the algorithm on the GPU.
The method is accurate but achieves interactive frame
rates only in very simple scenes. Theimperfect vol-
ume can be seen as a radiance cache, but also stores
occupancy information to perform the raytracing cal-
culations directly on the volume and not the scene
geometry and uses a uniform grid arrangement of
the cache points to facilitate fast computation on the
GPU.

Nijasure (Nijasure et al., 2004) uses spherical har-
monics to store the incoming radiance of the scene in
a uniform grid structure. The surfaces are rendered by
interpolating the radiance from the closest grid points.
This method supports multiple bounces and indirect
occlusion but it’s very expensive because it requires
the complete scene to be rendered in a cube map for
the radiance estimation on each grid point.

Kaplanyan (Kaplanyan and Dachsbacher, 2010)
also uses a regular grid to store the scene radiance
and he uses a propagation scheme to calculate the
radiance distribution on the scene. Radiance is ini-
tially injected in VPL positions and then it is itera-
tively propagated through empty space. The method
achieves high performance but indirect occlusion is
only limited to surfaces visible in the camera and the
shadowmaps. Compared to that, theimperfect volume
has the advantage that occlusion information is avail-
able for the whole scene.

Papaioannou (Papaioannou et al., 2010) uses a
volume representation of the scene where rays are
traced from surface points through the volume to de-
termine the occlusion of each visible point, but to
achieve real time performance ambient occlusion is
rendered at a lower resolution. Our method also traces
rays in a volume, but can achieve better performance
by doing it at regular intervals in world space and not
for every visible surface point.



3 Method Overview

Our method consists of following stages: first a dense
point cloud representation of the scene is created on-
the-fly using geometry shaders, and is projected in the
imperfect volume, storing the occupancy and the di-
rect illumination of each voxel. After that, the im-
perfect volume is refined by reprojecting the visible
points of the framebuffer into the volume, creating
a nearly perfect voxelization of the visible surfaces.
Next, the incoming radiance of each voxel is calcu-
lated by sampling the volume using ray-marching and
monte carlo quadrature and the results are stored us-
ing a vector of spherical harmonic coefficients. Fi-
nally, during image rendering, the irradiance of each
surface point is calculated taking into account the ra-
diance of the nearest voxels.

3.1 Imperfect Volume Creation

Our goal is to create a volume representation of the
full scene, storing occupancy and illumination infor-
mation. Previous fast one-pass voxelization algo-
rithms, like (Eisemann and D́ecoret, 2008), cannot
be used because our algorithm requires the storage of
arbitrary data in each voxel and should work on any
object, not necessarily watertight. Since we consider
our scenes fully dynamic, the complete volume rep-
resentation must be rebuilt in every frame, so a high
performance algorithm is essential for our method.

We observe that diffuse indirect illumination has
the characteristics of a low frequency function, con-
sisting of smooth gradations, which tend to mask er-
rors due to incorrect visibility. To exploit this we
compute the indirect illumination on a rough approx-
imation of the scene, animperfect volume. While im-
perfect volumes may contain missing voxels (holes),
the resulting errors in the indirect illumination are
small but the computational gains are significant, as
we will demonstrate in detail in Section 4.

The volume is created from a dense point-cloud
representation of the scene. Although we can pre-
calculate the point cloud in advance, we chose to gen-
erate it on the fly using the geometry shader func-
tionality of the latest graphics cards. This approach
has the advantage that the maintenance of an alter-
nate point-based representation of the scene is not re-
quired, something that simplifies the integration with
the rendering pipeline of typical real-time applica-
tions.

For each input triangle,N random pointsvrand are
generated over the surfaceA of the triangle with prob-
ability densityp(x) = 1/A, using the following equa-

Figure 1: For each input triangle,N random points are cre-
ated, marking the corresponding voxels as occupied. Each
point is directly rendered to the appropriate volume layer,
according to its depth.

tion(Turk, 1990):

vrand = (1−
√

r1)v1+(1− r2)
√

r1v2+ r2

√
r1v3

wherev1,v2 andv3 are the vertices of the triangle and
r1,r2 are random numbers, uniformly generated over
the interval[0,1]. The geometry shader takes as input
a triangle and emitsN points. For each emitted point,
the appropriate slice of the volume is calculated and
the point is directly rendered to this slice, marking the
corresponding voxel as occupied. For each point the
direct illumination is calculated using the interpolated
normal from the input triangle and the result is stored
in the volume using a spherical harmonics represen-
tation.

The obvious flaw in the above algorithm is that
there is no guarantee that every voxel containing a tri-
angle will receive a random point, as shown in figure
1. As the densityd = N/A of the generated points
increases, the probability that an occupied voxel will
not receive a random point decreases. The density of
the generated points is proportional to the numberN
of the generated points per triangle, and inversely pro-
portional to the area of the input triangles. In other
words our algorithm gives better results when the
number of the generated points increases and when
the size of the input triangles is small relatively to size
of the voxels.

It should be noted that geometry shaders are not
fast doing data amplification (generating new geome-
try), so when producing more random points the per-
formance quickly drops. It’s more preferable to tes-
sellate big triangles at load or content creation time,
than to generate more points at run-time. We have
also experimented with adaptively adjusting the num-
ber of generated points, depending on the size of the
triangle. Also we have tried to generate a more uni-
form distribution of points by doing a regular tessella-
tion of the input triangle. Both approaches turned out
to be slower by a very wide margin. We also experi-
mented with the dedicated hardware tessellation units,
to produce tessellated triangles and then convert them



to points in the geometry shader, but interestingly this
approach turned out to be slower as well.

3.2 Framebuffer Reprojection

In this step the visible regions of the imperfect vol-
ume are refined with data from the framebuffer. Be-
fore this step, a typical deferred renderer renders the
scene on a g-buffer structure (Akenine-Möller et al.,
2008), containing the depth, normals and albedo of
the visible materials and using those buffers calcu-
lates the direct lighting of the visible surfaces. The
visible points of the depth buffer are then projected
back in world space, and then are reprojected in the
voxels of the imperfect volume.

To perform this reprojection, an array of points is
used, each point corresponding to a pixel in the frame-
buffer. Each point reads the depth of the correspond-
ing pixel in the vertex shader and is projected from
clip coordinates back to world space, to reprojected in
the imperfect volume. A geometry shader routes the
points to a slice of the 3d volume according to their
depth. Finally, the fragment shader reads the albedo,
normal and the direct lighting of the point, already
computed and stored by the deferred renderer, and in-
jects it to the volume using a spherical harmonics rep-
resentation according to the normal of the point.

Since the number of the visible points that are pro-
jected in the volume is considerably larger than the
number of the visible voxels, this operation results
in an almost perfect voxelization of the visible sur-
faces, eliminating most of the imperfections in the
visible portion of the imperfect volume. And because
the direct illumination is already computed by the de-
ferred renderer, this operation is extremely fast (about
0.6ms for 5122 points on a nvidia gtx460). Using this
technique, the number of random points per triangle
needed in the previous step is considerably reduced,
and the overall performance and the quality of the
method increases.

3.3 Volume Sampling and Radiance
Caching

The incoming radiance distribution of each voxelLi is
stored in the volume as a vector of spherical harmonic
coefficientsλm

l , such as

Li(θ,φ) =
n−1

∑
l=0

l

∑
m=−l

λm
l Y m

l (θ,φ) (1)

where n is the order of the SH representation
and Y m

l are the spherical harmonic basis func-
tions(Ramamoorthi and Hanrahan, 2001). Our im-

n

θ

Figure 2: Irradiance reconstruction for a surface point from
8 neighboring voxels. To avoid bias from self intersections
we ignore the values in the current occupied voxel, and we
reconstruct the irradiance from the neighboring voxels. The
voxels behind the surface, marked with an “x” do not con-
tribute to the computation.

plementation uses a 2ndorder spherical harmonic rep-
resentation, since the four SH coefficients map very
well to the four component buffers supported by the
graphics hardware. The coefficientsλm

l can be com-
puted with the following integral

λm
l =

∫ 2π

0

∫ π/2

−π/2
Li(θ,φ)Y m

l (θ,φ)sinθdθdφ (2)

Since we don’t have an analytical form forLi, but we
can take samples of this function using raycasting, we
computeλm

l using monte carlo quadrature with uni-
form sampling

λm
l =

4π
N

N

∑
j=1

Li(θ j,φ j)Y
m
l (θ j,φ j) (3)

whereLi is the incoming radiance from the(θ j,φ j)
direction of the sphere andN is the total number of
samples.

In order to compute theLi term in equation 3, we
sample the radiance that is stored in the volume repre-
sentation of the scene. For every voxelN, random di-
rections on the sphere are created using stratified sam-
pling, and rays starting from the center of the voxel
are traced using ray-marching, a process where the
volume is sampled in regular intervals along the ray,
until an occupied cell is found or the extends of vol-
ume are reached.

Even though the rays start from the center of
each voxel, to avoid self intersections the actual ray-
marching should start outside the originating voxel.
To do this an initial distanceds along each ray should
be skipped. Papaioannou (Papaioannou et al., 2010)
proposes an elaborate variable guard distance to avoid
self intersections when ray-marching volume data,
but this measure can only be used when the ray-
marching begins from the surfaces, because the actual
surface normal is required for the calculations. In our
case we use a variation of this measure. For cubic



Figure 3: On the left direct visualization of the radiance in
the volume. Notice how the occlusion effect is exagerated
and flat surfaces appear too dark. On the right proper recon-
struction with the proposed scheme.

voxels of sizesv the distance that we skip is

ds =

√
3

2
sv

which is the radius of the bounding sphere of the
voxel (or the distance from the center to the cor-
ners). This scheme does not avoid self intersections
with neighboring voxels potentially generated from
the same polygon, but we skip these intersections
when doing the final per-pixel irradiance reconstruc-
tion, as described in the next section.

Our method samples the illumination from one
volume buffer and writes the results to another one.
By alternating between those two buffers in succes-
sive passes we compute multiple bounces of the light.

3.4 Irradiance Reconstruction

The diffusely reflected light, orradiosity B, of a point
x on a surface with diffuse reflectivityρ is given by
the following equation (Kajiya, 1986):

B(x) =
ρ(x)

π

∫
Ω

Li(x,ω)cosθdω (4)

whereθ is the angle between the surface normal and
the incident radiance directionω. The integral in this
equation computes the power thatx receives and is
calledirradiance and the integration domainΩ is the
hemisphere defined by the surface normal at pointx.

During the final scene rendering, equation 4 must
be evaluated for every visible surface point in order to
determine the color of each pixel. To determine the
incident radianceLi of a surface point in the scene,
we don’t take in to account the radiance of the corre-
sponding voxel in the volume, because the stored ra-
diance distribution will be biased from intersections
with neighboring voxels, potentially generated from
the same surface. Instead, we shift the surface point
outside the current voxel by moving it half a voxel

along the normal, and then we recalculate a more ac-
curate distribution of the radiance, taking in to ac-
count the surface orientation and the radiance of the
N closest voxels, using the following equation

L̇i =
∑N

j=1 w jL̇i j

∑N
j=1 w j

, where w j =

{

cosθ, θ < π/2
0, θ > π/2

(5)
where L̇ denotes the spherical harmonic representa-
tion of L. The weightswi, as illustrated in figure 2,
guarantee that voxels behind the surface will not con-
tribute to the radiance computation, and that voxels
facing the normal of the surface will contribute the
most. Finally the computed irradiance is linearly in-
terpolated by the graphics hardware. Figure3 demon-
strates the effectiveness of this method. For perfor-
mance reasons, in the actual implementation of the
algorithm we only consider the six nearest voxels.

Finally, since the radiancėLi is represented us-
ing spherical harmonics, we compute the irradiance
integral in equation 4 as a simple dot product with
the spherical harmonic representation of the cosine
lobe(Ramamoorthi and Hanrahan, 2001), directed to-
wards the surface normal.

3.5 Ambient Occlusion Calculation

Ambient occlusion is a rough approximation of the
global illumination, where the radiance distribution of
the whole scene is considered constant. Equation 4
can then be rewritten as

A(x) =
1
π

∫
Ω

Vi(x,ω)cosθdω (6)

where the incoming radianceLi has been replaced
with the visibility termVi.

In the case of AO calculation, when an occupied
voxel is reached instead of returning its stored radi-
ance, we return zero. If no obstacle is reached, we
return one. We also limit the maximum traversed dis-
tance along the rays to a short distance. The rest of the
algorithm remains the same, but these simplifications
make the AO calculation much faster than GI.

4 Results

We have integrated the above algorithm in a tradi-
tional real-time deferred renderer using OpenGL and
GLSL. Unless otherwise noted, all figures presented
here are created with 19 random points per triangle,
100 rays per voxel, 643 voxels and a ray marching
step size of one voxel. All the time measurements are
on a nvidia gtx460, unless otherwise noted.



G T3 T7 T12 T19 Trp

sponza 262267 22 52 86 125 0.7
knossos 109168 11 22 35 55 0.7
arena 10219 2 4 5 7 0.7
room 8760 4 5.4 8 10 0.7

Table 1: The performance of imperfect volume creation.G:
number of triangles,Ti: times in milliseconds when emit-
ting i vertices per triangle,Trp: times for framebuffer repro-
jection using 5122 points.

0

10

20

30

40

50

60

20k 40k 60k 80k 100k

M
il
li
se
co
n
d
s

Triangles

32

64

96

Figure 4: Volume creation scaling with the number of tri-
angles and the volume size. When the volume resolution
is doubled, the number of generated points per triangle are
also doubled, to keep the quality of the voxelization identi-
cal. Times measured in milliseconds on a ATI Radeon 3650.

Table 1 shows the time required to create the im-
perfect volume on various scenes. As shown, imper-
fect volumes can be created extremely fast, even for
very large datasets. The performance of our method,
but also the quality of the resulting volume, depends
on the number of the generated points per triangle. In
most scenes we get nearly perfect voxelization with
12 to 19 points. The framebuffer reprojection scheme
guaranties that the visible portion of the imperfect
volume will always get a nearly perfect voxelization
at extremely low cost, independently from the num-

Figure 5: Left: AO with framebuffer reprojection only.
Right: AO with 3 random points per triangle and frame-
buffer reprojection. Notice how the contact shadows from
the invisible geometry is missing in the first case. All
screenspace algoritms inevitably have this problem. In the
second case the contact shadows are correctly reproduced,
due to information available in the imperfect volume.

G RAO RGI I
sponza 262267 12 58 7
knossos 109168 12 52 6
arena 10219 16 60 5
room 8760 15 70 7

Table 2: Time measurements for our method (in millisec-
onds). G: number of triangles,RAO: Ray-marching time
for AO, RGI : Ray-marching time for GI (per bounce),I:
Reconstruction/Interpolation time.

ber of the generated random points per triangle. But
since we are using the imperfect volume to compute
global illumination effects, the invisible parts of the
volume are also needed. If we skip the tessellation
step, and we operate only on the visible voxels cre-
ated by the framebuffer reprojection, then our method
has the same disadvantages as the screen space meth-
ods(Ritschel et al., 2009b)(Shanmugam and Arikan,
2007), as shown in figure 5. By using the informa-
tion in the invisible parts of the volume, our method
maintains consistency between frames, unlike previ-
ous methods. In this spirit, our method can be seen
as an extension of screen space methods to include
information not visible in the framebuffer.

Figure 4 shows how the algorithm scales with the
number of input triangles and the volume resolution.
When the volume resolution is doubled we also dou-
ble the number of the generated points, to keep the
density of the points per voxel constant. We observe
sub-linear sclaling with the number of triangles and
linear scaling with the volume size.

Table 2 shows comprehensive time measurements
for our method when calculating ambient occlusion
and diffuse indirect illumination. All scenes are con-
sidered to have fully dynamic geometry and lighting
conditions. We can see that even on the most complex
scenes, our algorithm maintains an interactive framer-
ate and, as expected, the AO is much faster than GI,
since the raymarched distance is shorter and only the
coverage information is fetched from the volume.

Figure 6 shows how the imperfections of the vol-
ume affect the final image and showcases the impor-
tance of framebuffer reprojection. We can see that
when using few random points, the contact shadows
in ambient occlusion are smoothed out. Imperfect
shadow maps suffer from the same problem, but in
our method this is corrected on the visible surfaces
with the reprojection of the framebuffer. Any further
imperfections in the invisible parts of the scene do not
produce any objectionable errors in the illumination,
and they are mostly unnoticeable in the final textured
image.

Figure 7 illustrates how the volume resolution af-



Figure 6: The arena scene with ambient occlusion. Bottom
left: the ambient occlusion buffer. Bottom right: The re-
sulting occlusion using a) 9 points per triangle, b) 12 points
per triangle, c) 3 points per triangle plus voxelization with
framebuffer reprojection.

Figure 7: The room scene with ambient occlusion. Bottom
left: The ambient occlusion render buffer. Bottom right:
Small scale details are lost when using insufficient volume
resolution.

Figure 8: Global illumination in the sponza palace scene.

fects the final image quality on the room scene. We
can see that when the volume resolution is insuffi-
cient, small scale details like the contact shadows of
the table, are lost. On the other hand even a low res-
olution volume is enough to capture the variations in
the shading of thin complicated objects like the vase,
which appears dark from the inside, lit from the out-
side. This is achieved because each voxel stores the
radiance distribution of the corresponding area, and
not just a constant illumination value.

Figure 8 shows global illumination on the sponza
palace model. The contribution of the GI has been
scaled in the final image to better illustrate the effect
of color bleeding. Figure 9 shows several shots of the
knossos scene, using ambient occlusion and diffuse
global illumination.

4.1 Discussion and Limitations

The performance of our method is mostly indepen-
dent of the final image resolution, because the actual
global illumination is calculated at regular intervals in
world space. This is a big advantage over instant ra-
diosity methods, like ISMs that need to compute the
illumination in lower resolutions to achieve interac-
tive framerates. Also, compared to ISMs our method
does not require the maintenance and the constant up-
date of a secondary point-based scene representation,
making the algorithm more practical.

An interesting observation is that the performance
of ray-marching vastly improved once we removed
the branching from our implementation. The branch-
less implementation continues to march along the rays
even when the first obstacle is found and uses condi-
tional moves to discard any further results. This is



Figure 9: Several shots from of the knossos scene, showcasing ambient occlusion (left and right) and global illumination
(middle). Three bounces were used for the indirect diffuse illumination.

to be expected since branching introduces irregular
workload to the shader units, and the hardware sched-
uler of the GPUs is extremely inefficient in such cases
(Ragan-Kelley, 2010).

Another advantage of our algorithm over instant
radiosity methods, is that since no triangle scan-
conversion is required, it can be implemented effi-
ciently on any parallel architecture, like future many-
core cpus, without the need of dedicated fixed-
function hardware. That holds true for both the
volume creation and the ray-marching phase of our
method.

Instead of the used ray-marching scheme, the
radiance propagation method from (Kaplanyan and
Dachsbacher, 2010) could be used, in conjunction
with the imperfect volume and our radiance recon-
struction strategy. Our tests showed problems with
the energy conservation of this method when multi-
ple propagation steps are used. On the other hand the
usage of volume ray-marching permited us to unify
the calculation of AO and GI under the same method.
While the advantages of ray-marching over the radi-
ance propagation scheme could be argued, theimper-
fect volume we propose here contains more informa-
tion about the invisible parts of the scene compared
to the volume proposed by Kaplanyan (which is only
build from framebuffer and shadowmap reprojection),
with a moderate performance hit.

Since even perfect voxelization is a rough dis-
cretization of the scene geometry, global illumination

effects from small scale geometric details cannot be
reproduced accurately by our method. Higher voxel
resolutions can always be used, but with a perfor-
mance hit since more points per triangle should be
generated in that case. On the other hand, our method
is more efficient than screen space methods at com-
puting large scale occlusion or GI and also includes
information not available in the framebuffer.

Also, due to graphics hardware and memory band-
width limitations, like most of the other real-time
methods, we only used second order spherical har-
monics, which lack sufficient accuracy to represent
high frequency indirect light. This is not crucial if the
direct illumination covers large parts of a scene yield-
ing only very low-frequency indirect shadows in the
first place.

Overall, we believe that our method improves on
major shortcomings and trade-offs of previous meth-
ods, while the remaining limitations are justified in
order to achieve the desired level of performance.

5 Conclusion and Future Work

We have presented a new method for the computation
of ambient occlusion and diffuse indirect light trans-
port in large and fully dynamic scenes in real-time.
Our method operates on a rough approximation of the
entire scene, animperfect volume, created by a fast
point-based vozelization algorithm. Although this al-



gorithm does not give any hard guarantees about the
quality of the voxelization, we have demonstrated that
potential errors introduced by the imperfections in the
volume are small and that our method always main-
tains an interactive frame rate in a variety of test cases.

We believe that imperfect volumes can also be
useful for many types of algorithms that operate on
volume data, like real-time smoke and water sim-
ulation, where high performance is essential and
small inaccuracies in the voxelized geometry will be
masked out in the results.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for
their helpful comments. The sponza palace model has
been kindly provided by Crytek. The knossos model
is available from the AUEB computer graphics group
website.

REFERENCES

Akenine-Möller, T., Haines, E., and Hoffman, N. (2008).
Real-Time Rendering 3rd Edition. A. K. Peters, Ltd.,
Natick, MA, USA.

Dachsbacher, C. and Stamminger, M. (2005). Reflective
shadow maps. InProceedings of the 2005 ACM Sym-
posium on Interactive 3D Graphics and Games, pages
203–231. ACM SIGGRAPH.

Dachsbacher, C. and Stamminger, M. (2006). Splatting in-
direct illumination. InProceedings of the 2006 Sym-
posium on Interactive 3D Graphics and Games, pages
93–100. ACM SIGGRAPH, ACM Press.

Eisemann, E. and D́ecoret, X. (2008). Single-pass gpu solid
voxelization for real-time applications. InGI ’08:
Proceedings of graphics interface 2008, pages 73–80,
Toronto, Ont., Canada, Canada. Canadian Information
Processing Society.

Jensen, H. W. (1996). Global Illumination Using Photon
Maps. InRendering Techniques ’96 (Proceedings of
the Seventh Eurographics Workshop on Rendering),
pages 21–30. Springer-Verlag/Wien.

Kajiya, J. T. (1986). The Rendering Equation. InCom-
puter Graphics (ACM SIGGRAPH ’86 Proceedings),
volume 20, pages 143–150.

Kaplanyan, A. and Dachsbacher, C. (2010). Cascaded light
propagation volumes for real-time indirect illumina-
tion. In I3D ’10: Proceedings of the 2010 ACM SIG-
GRAPH symposium on Interactive 3D Graphics and
Games, pages 99–107, New York, NY, USA. ACM.

Keller, A. (1997). Instant radiosity. InComputer Graph-
ics (ACM SIGGRAPH ’97 Proceedings), volume 31,
pages 49–56.

Křivánek, J., Gautron, P., Pattanaik, S., and Boua-
touch, K. (2005). Radiance caching for efficient
global illumination computation. IEEE Transac-
tions on Visualization and Computer Graphics, 11(5).
Also available as Technical Report #1623, IRISA,
http://graphics.cs.ucf.edu/RCache/index.php.

McGuire, M. and Luebke, D. (2009). Hardware-accelerated
global illumination by image space photon map-
ping. In Proceedings of the 2009 ACM SIG-
GRAPH/EuroGraphics conference on High Perfor-
mance Graphics, New York, NY, USA. ACM.

Nijasure, M., Pattanaik, S., and Goel, V. (2004). Real-time
global illumination on the GPU.Journal of Graphics
Tools, 10(2).

Papaioannou, G., Menexi, M. L., and Papadopoulos, C.
(2010). Real-time volume-based ambient occlusion.
IEEE Transactions on Visualization and Computer
Graphics, 99(RapidPosts).

Ragan-Kelley, J. (2010). Keeping many cores busy:
Scheduling the graphics pipeline. InSIGGRAPH
’10: ACM SIGGRAPH 2010 Courses, New York, NY,
USA. ACM.

Ramamoorthi, R. and Hanrahan, P. (2001). An efficient
representation for irradiance environment maps. In
SIGGRAPH ’01: Proceedings of the 28th annual con-
ference on Computer graphics and interactive tech-
niques, pages 497–500, New York, NY, USA. ACM.

Ritschel, T., Englehardt, T., Grosch, T., Seidel, H.-P., Kautz,
J., and Dachsbacher, C. (2009a). Micro-rendering for
scable, parallel final gathering.ACM Transactions on
Graphics (Proc. SIGGRAPH Asia 2009), 28(5).

Ritschel, T., Grosch, T., Kim, M. H., Seidel, H.-P., Dachs-
bacher, C., and Kautz, J. (2008). Imperfect shadow
maps for efficient computation of indirect illumina-
tion. ACM Transactions on Graphics, 27(5).

Ritschel, T., Grosch, T., and Seidel, H.-P. (2009b). Approx-
imating dynamic global illumination in image space.
In Proc. ACM Symposium on Interactive 3D Graphics
and Games 2009 (I3D ’09).

Shanmugam, P. and Arikan, O. (2007). Hardware acceler-
ated ambient occlusion techniques on gpus. InI3D
’07: Proceedings of the 2007 symposium on Interac-
tive 3D graphics and games, pages 73–80, New York,
NY, USA. ACM.

Turk, G. (1990). Generating random points in triangles.
pages 24–28.

Walter, B., Fernandez, S., Abree, A., Bala, K., Onikian, M.,
and Greenberg, D. P. (2005). Lightcuts: A scalable
approach to illumination. InACM SIGGRAPH 2005
Full Conference DVD-ROM, pages 1098–1107.

Wang, R., Wang, R., Zhou, K., Pan, M., and Bao, H.
(2009). An efficient GPU-based approach for inter-
active global illumination. volume 28.

Ward, G. J., Rubinstein, F. M., and Clear, R. D. (1988). A
Ray Tracing Solution for Diffuse Interreflection. In
Computer Graphics (ACM SIGGRAPH ’88 Proceed-
ings), volume 22, pages 85–92.


