
Accelerating k+-buffer using efficient fragment culling

Andreas A. Vasilakis∗ and Georgios Papaioannou†

Dept. of Informatics, Athens University of Economics & Business, Greece

1 Introduction

In the last decade, significant research has been conducted for ad-
dressing the problem of multi-fragment rendering from different
perspectives. While the hardware-accelerated A-buffer is the dom-
inant structure for holding multiple fragments via per-pixel linked
lists, several variants have been proposed to alleviate the cost of
excessive allocation and random access of video-memory. k-buffer
is a widely-accepted A-buffer approximation, able to capture the
k-closest to the viewer fragments, due to its reduced memory and
computation requirements. To alleviate contention of distant frag-
ments when rendering highly-complex scenes, k+-buffer [Vasilakis
and Fudos 2014] concurrently performs culling checks to efficiently
discard fragments that are farther from all currently maintained
fragments. Unfortunately, the fragment elimination process is per-
formed inside the pixel shader execution, thus not exploiting the
performance gain of hardware-accelerated early-Z culling. Further-
more, it depends on the fragment arrival order and requires the in-
sertion of k fragments to start performing any culling tests.

2 Occupancy-based Fragment Culling

In this work, we investigate an efficient approach to treat fragment
racing when computing k-nearest fragments. Based on the obser-
vation that knowing the depth position of the k-th fragment we
can optimally find the k-closest ones, we introduce a novel order-
independent fragment culling component, easily attached to the k+-
buffer pipeline. An additional rendering pass of the scene’s geome-
try is initially employed to construct a per pixel binary fragment oc-
cupancy discretization. Then, the nearest depth of the k-th per pixel
fragment is concurrently computed by performing bit counting op-
erations and subsequently utilized to perform early-z rejection for
the k+-buffer construction process that follows. Any fragment with
depth larger than this value will fail the depth test, avoiding the cost
of its pixel shading execution. Note that no software modifications
are required to the actual k+-buffer implementation.

The depth range of each pixel p is divided into B = 32 · d uni-
form consecutive subintervals [bj , bj+1), where bj = p.near +
j
B
(p.far − p.near), j = 0, 1, . . . , B − 1 and d > k/32 defines

the depth space subdivision. A depth-range map is initially com-
puted, containing for each pixel p the nearest (p.near) and farthest
fragment (p.far) depth values from the camera. Then, a depth oc-
cupancy buffer is utilized to define a per-pixel bitmask B, whose
entries indicate the presence of fragments in a subinterval. Dur-
ing the first geometry pass, the j-th bit of the depth map is set
to 1 for each arriving fragment falling within the corresponding
bucket via blending or atomic operations, depending on the hard-
ware. Subsequently, a full-screen pass is performed to concurrently

∗abasilak@aueb.gr
†gepap@aueb.gr

0

10

20

30

40

50

60

70

80

90

100

4 8 16 32 64 4 8 16 32 64

Hairball Tree

m
ill
is
ec
o
n
d
s

K+B-old K+B-new (occupancy map) K+B-new (store)

Figure 1: Performance evaluation of the actual and modified k+-
buffer (K+B) under varying k = 4, . . . , 64 values.

count the number of 1s in the bit-array for each pixel by adjust-
ing Brian Kernighan’s algorithm. When the value of the counter
reaches k, the current bucket’s depth is returned to the Z-buffer.
The average-case complexity of this pass is O(k). Then, k+-buffer
is efficiently constructed by taking advantage of the early-z culling
capabilities of the GPU. Note that in the case where more than one
fragments are routed to the same subinterval and merged into one
bit, our method is theoretically correct since we may have possibly
stored the next larger fragment than k-th one.

3 Discussion

Figure 1 illustrates the performance increase when the proposed
fragment clipping with d = 32 is enabled on the k+-buffer. Despite
the additional geometry passes needed, performance increases by
20% to 50%, when rendering the hairball (2.8M, 150) and needle
tree (43.2T, 100) models (# triangles, average depth complexity)
with a set of increasing k = 4, . . . , 64 values at 10242 resolution
on an NVIDIA GeForce GTX780 Ti. Without loss of generality,
we may reuse occupancy buffer for capturing information of the
actual k+-buffer, since the k-th fragment computation is performed
before the final rasterization. Thus, our extension requires specifi-
cally (d − k + 3) · 32 bits additional per pixel storage. However,
when moving to extreme screen or occupancy map resolutions, this
cost is noticeable.

Acknowledgements. This research has been co-financed by the
European Union (European Social Fund - ESF) and Greek national
funds through the Operational Program ”Education and Lifelong
Learning” of the National Strategic Reference Framework (NSRF) -
Research Funding Program: ARISTEIA II-GLIDE (grant no.3712).

References

VASILAKIS, A. A., AND FUDOS, I. 2014. k+-buffer: Fragment
synchronized k-buffer. In Proceedings of the 18th Meeting of
the ACM SIGGRAPH Symposium on Interactive 3D Graphics
and Games, ACM, New York, USA, I3D ’14, 143–150.


