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• 2D display devices consist of discrete grid of pixels 

• Rasterization: converting 2D primitives into a discrete pixel 

representation 

• The complexity of rasterization is O(Pp), where P is the number 

of primitives and p is the number of pixels 

• There are 2 main ways of viewing the grid of pixels: 

 Half – Integer Centers  

 Integer Centers (shall be used)  

• Connectedness: which are the neighbors of a pixel? 

 4 – connectedness 

 8 – connectedness 

• Challenges in designing a rasterization algorithm: 

 Determine the pixels that accuracy describe the primitive 

 Efficiency 

Rasterization 
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• Half – Integer Centers         Integer Centers 

 

 

 

 

 

 

• 4 – Connectedness                 8 - Connectedness 

 

 

 

Rasterization (2) 
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Mathematical Curves 
 

• Two mathematical forms: 

 Implicit Form:  

e.g.: 

 

 

 

 Parametric Form: 

 Function of a parameter t      [0, 1] 

 t corresponds to arc length along the curve 

 The curve is traced as t goes from 0 to 1 

e.g.:   l(t) = (x(t), y(t)) 

0, implies point(x,y) is 'inside' the curve

( , ) 0, implies point(x,y) is on the curve

0,    implies point(x,y) is 'outside' the curve

f x y
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Mathematical Curves (2) 
 

• Examples: 

 Implicit Form:  

 line:                                   

             where a, b, c : line coefficients 

        if  l(x, y) = 0 then point (x, y) is on the curve 

  else  if  l(x, y) < 0 then point (x, y) is on one half-plane 

        else if  l(x, y) > 0 then point (x, y) is on the other half-plane  

 circle:                                            

                where (xc, yc) : the center of the circle & r: circle’s radius 

            if  c(x, y) = 0 then point (x, y) is on the circle 

       else  if  c(x, y) < 0 then point (x, y) is inside the circle 

            else if  c(x, y) > 0 then point (x, y) is outside the circle  

 

( , ) 0l x y ax by c

2 2 2( , ) ( ) ( ) 0c cc x y x x y y r
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Mathematical Curves (3) 
 

• Examples: 

Parametric Form:  

 line:  l(t) = (x(t), y(t))                       

              where x(t) = x1 + t (x2- x1)  , 

                          y(t) = y1 + t (y2 –y1)  , 

                          t      [0,1] 

 circle:  c(t) = (x(t), y(t))                                          

                 where x(t) = xc + r  cos(2πt)  , 

                               y(t) = yc + r  sin(2πt), 

                               t      [0,1] 

 



Finite Differences 
 

• Functions that define primitives need to be evaluated on the 

pixel grid for each pixel  wasteful 

• Cut this cost by taking advantage of finite differences 

• Forward differences (fd): 

 First (fd) :   

 Second (fd):  

 kth (fd): 

• Implicit functions can be used to decide if the pixel belongs to 

the primitive 

 e.g.: pixel(x, y) is included if |f(x, y)|< e,  

 where e: related to the line width 
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Finite Differences (2) 
 

• Examples: 

 Evaluation of the line function incrementally:  

     from pixel (x, y) to pixel (x+1, y) 

         Calculation of  the forward differences of the implicit line equation 

         in the x direction from pixel x to pixel x+1: 

 

    Compute    

    from pixel (x, y) to pixel (x+1, y) 

         Calculation of  the forward differences of the implicit line equation 

         in the y direction from pixel y to pixel y+1: 

   

             Compute 
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Finite Differences (3) 
 

• Examples: 

 Evaluation of the circle function incrementally:  

     from pixel (x, y) to pixel (x+1, y) 

         Calculation of  the forward differences of the implicit circle equation. 

         Since it has degree 2 there are two forward differences in the x      

        direction from pixel x to pixel x+1: 

 

 

 

         Compute 

 

 

from pixel (x, y) to pixel (x, y+1):  similar by adding     
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Line Rasterization 

• Desired qualities of a line rasterization algorithm: 

 Selection of the nearest pixels to the mathematical path of the line 

 Constant line width, independent of the slope of the line 

 No gaps 

 High efficiency 

 

 

 

 

 

 

 

 

              The 8 octants with an example line in the first octant  
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Line Rasterization Algorithm 1 
• Draw a line from pixel ps = (xs, ys) to pixel pe = (xe, ye) in the first octant 

 

• Slope of the line: 

 

Algorithm:  

line1 ( int  xs, int  ys, int  xe, int  ye, colour  c )  {  

     float  s; int  x, y;  

     s = (ye -  ys) / (xe -  xs);  (x, y) = (xs, ys);  

     while  (x <= xe) {  

   setpixel (x, y, c);  

         x = x + 1;  

         y = ys + round(s * (x -  xs));  

  }  

}   
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Line Rasterization Algorithm 1 (2) 

 

• Using  line1  algorithm in the first and second octants: 

Graphics & Visualization: Principles & Algorithms                             Chapter 2 
12 



Line Rasterization Algorithm 2 
• Avoid rounding operation by splitting y value into an integer and a float part e 

• Compute its value incrementally 

Algorithm:  

line2 ( int  xs, int  ys, int  xe, int  ye, colour  c )  {  

    float  s, e;  int  x, y;  

    e = 0;    s = (ye -  ys) / (xe -  xs);    (x, y) = (xs, ys);  

    while  (x <= xe) {  

        /* assert - 1/2 <= e < 1/2 */  

        setpixel(x, y, c);  

        x = x + 1;  

        e = e + s;  

        if  (e >= 1/2) {  

            y = y + 1;  

            e = e -  1;  

      }  

 }  

}   
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Line Rasterization Algorithm 2 (2) 
• Algorithm line2  resembles the leap year calculation  

 

• The slope is added to the e variable at each iteration until it 

makes up more than half a unit & then the line leaps up by 1. 

• The integer y variable is incremented and e is correspondingly 

reduced, so that the sum of the 2 variables is unchanged. 

 

• Similarly, the year has approximately 365,25 days but 

calendars are designed with an integer number of days. 

• We add a day every 4 years to make up for the error being 

accumulated.  
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Bresenham Line Algorithm  
• Replace the floating point variables in line2  by integers  

• Multiplying the leap decision variables by dx  = xe – xs makes s 

and e integers 

• The leap decision becomes e ≥      because e is integer 

 

•          can be computed by a numerical shift 

 

• For more efficiency replace the test e ≥          by e ≥ 0 using 

 

 an initial subtraction of             from e 
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Bresenham Line Algorithm (2)  
• Floating point variables are replaced by integers 

Algorithm 

line3 ( int  xs, int  ys, int  xe, int  ye, colour  c )  {  

    int  x, y, e, dx, dy;  

    e = -  (dx >> 1); dx = (xe -  xs); dy=(ye -  ys); (x, y)=(xs, ys);  

    while  (x <= xe) {  

        /* assert - dx <= e < 0 */  

        setpixel(x, y, c);  

        x = x + 1;  

        e = e + dy;  

        if  (e >= 0) {  

            y = y + 1;  

            e = e -  dx;  

        }  

    }  

}  

 

          

Graphics & Visualization: Principles & Algorithms                             Chapter 2 
16 



Bresenham Line Algorithm  (3) 

• Suitable for lines in the first octant 

• Changes for other octants according to the following table 

 

 

 

 

 

 

 

• Meets the requirements of a good line rasterization algorithm 
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Circle Rasterization 

• Circles possess 8–way symmetry 

• Compute the pixels of one octant  

• Pixels of other octants are derived using the symmetry 

 

Graphics & Visualization: Principles & Algorithms                             Chapter 2 
18 



Circle Rasterization Algorithm 

• The following algorithm exploits 8–way symmetry 

Algorithm: 

set8pixels ( int  x, y, colour  c )  {  

    setpixel(x, y, c);  

    setpixel(y, x, c);  

    setpixel(y, - x, c);  

    setpixel(x, - y, c);  

    setpixel( - x, - y, c);  

    setpixel( - y, - x, c);  

    setpixel( - y, x, c);  

    setpixel( - x, y, c);  

}  
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Bresenham Circle Algorithm 

• The radius of the circle is r 

• The center of the circle is pixel (0, 1) 

• The algorithm starts with pixel (0, r) 

• It draws a circular arc in the second octant 

• Coordinate x is incremented at every step 

• If  the value of the circle function becomes non-negative (pixel 

not inside the circle), y is decremented 
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Bresenham Circle Algorithm (2) 

• To center the selected pixels on the circle use a circle function 

which is displaced by half a pixel upwards; the circle center 

becomes (0, ½) 

 

• Initialize the error variable to: 

 

• Since error is an integer variable the ¼ can be dropped 

• e keeps the value of the implicit circle function 

• For the incremental evaluation of e use the finite differences of 

that function for the 2 possible steps of the algorithm 
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Bresenham Circle Algorithm (3) 

Algorithm: 

 

circle ( int r, colour c )  {  

    int  x, y, e;  

    x = 0;    y = r;  e = -  r;  

    while  (x <= y) {  

        /* assert e == x^2 + (y -  1/2)^2 -  r^2 */  

        set8pixels(x, y, c);  

        e = e + 2 * x + 1;  

        x = x + 1;  

        if  (e >= 0) {  

            e = e ͠ 2 * y + 2;  

            y = y -  1;  

         }  

     }  

 }  
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Point in Polygon Tests 

• Polygon:  n vertices (v0, …, vn-1)   form a closed curve 

    n edges       v0, v1, …, vn-1, v0 

 

• Jordan Curve Theorem: A continuous simple closed curve in 

the plane separates the plane into 2 regions. The ‘inside’ and the 

‘outside’ 

 

• For efficient rasterization we need to know if a pixel p is inside a 

polygon P. There are two types of inclusion tests: 

 Parity test 

 Winding number 

 

 
 

 
Graphics & Visualization: Principles & Algorithms                             Chapter 2 

23 



Point in Polygon Tests (2) 
• Parity Test: 

 Draw a half line from pixel p in any direction 

 Count the number of intersections of the line with the polygon P 

 If  #intersections == odd number then p is inside P 

 Otherwise p is outside P 
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Point in Polygon Tests (3) 

• Winding Number Test: 

 ω(P, p) counts the # of revolutions completed by a ray from p that traces P 

 

 

 For every counterclockwise revolution ω(P, p) ++ 

 For every clockwise revolution ω(P, p)-- 

 If ω(P, p) is odd then p is inside P 

 Otherwise p is outside P 
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Point in Polygon Tests (4) 

• The winding number test for point in polygon: 

 

 

 

• Simple computation of the winding number: 

 

 

• The sign test for point in convex polygon: 

 

  

 sign(lo(p)) = sign(l1(p)) = … = sign(ln-1(p)) 
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Polygon Rasterization 

• Basic Polygon Rasterization Algorithm: 

 Based on the parity test 

 Steps:  

1. Compute intersections I(x, y) of every edge with all the scanlines it intersects & store 

them in a list 

2. Sort the intersections by (y, x) 

3. Extract spans from the list & set the pixels between them 
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Singularities 

• Basic Polygon Rasterization Algorithm:  

 inefficient due to the cost of intersection computations 

 

• Problem: 

  if  a polygon vertex falls exactly on a scanline: 

    count 2, 1 or 0 intersections ?  

 

• Solutions:  

 regard edge as closed on the vertex with min y and open on 

the vertex with max y 

 ignore  horizontal edges 
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Singularities (2) 

• Rule for Treating Intersection Singularities 

 

 

 

 

• Effect of Singularities Rule on Singularities  
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Scanline Polygon Rasterization Algorithm 

• Takes advantage of scanline coherence & edge coherence 

• Uses an Edge Table (ET) and an Active Edge Table (AET) 

Algorithm: 

1.  Construct  the polygon ET,containing  the maximum y,  the min x 
and the inverse  slope of  each edge (y max, xmin, 1/s  ) .  The 

 record  of  an edge is  inserted  in  the bucket of  its  minimum y 
coordinate .  

2.  For every scanline  y that  intersects  the polygon in  an upward 
sweep 

 (a) Update the AET edge intersections  for  the current  scanline :   

   x = x + 1/s .  

 (b) Insert  edges from y bucket of  ET into  AET.  

 (c) Remove edges from AET whose ymax Ů y.  

 (d) Re- sort  AET on x.  

 (e) Extract  spans from the AET and set  their  pixels .  
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Scanline Polygon Rasterization Algorithm (2) 

• A polygon and its Edge Table (ET) 

 

 

 

 

 

 

 

• Example states of the AET 
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Scanline Polygon Rasterization Algorithm (3) 

 

• The edges that populate the AET change at polygon vertices 

according to the following figure: 

 

 

 

 

 

 

 

             Updating the AET 
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Critical points Polygon Rasterization Algorithm 

• Uses the local minima (critical points) explicitly in order to 

make ET redundant and to avoid its expensive creation 

 

• An example polygon (above)  and the contents of the AET for 3 

scanlines (below) 
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Critical points Polygon Rasterization Algorithm 

Algorithm: 

1.  Find and store the critical points of the polygon.  

2. For every scanline  y that intersects the polygon in an upward sweep  

(a) For every critical  point  c(c x,c y)  | (y - 1 < cy Ů y)  track  the perimeter  
of  the polygon in  both directions  starting  at  c.  Tracking  stops if  
scanline  y is  intersected  or  a local  maximum is  found.  For every 
intersection  with  scanline  y create  an AET record  (v,  ± 1,  x)  
containing  the start  vertex  number v of  the intersecting  edge, the 
tracking  direction  along the perimeter  of  the polygon ( - 1 or  +1 
depending on whether it  is  clockwise  or  counterclockwise)  and the x 
coordinate  of  the point  of  intersection .  

(b) For every AET record  that  pre- existed  step (a),  track  the polygon 
perimeter  in  the direction  stored  within  it .  If  an intersection  with  
scanline  y is  found,  the record's  start  vertex  number and 
intersection  x coordinate  are updated.  If  a local  maximum is  found 
the record  is  deleted  from the AET.  

(c) Sort the AET on x if necessary.  

(d) Extract spans from the AET and set their pixels.  
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Triangle Rasterization Algorithm 

• Triangle: simplest, planar, convex polygon 

• Determine the pixels covered by a triangle  perform an inside 

test on all the pixels of the triangle’s bounding box 

• The inside test can be the evaluation of the 3 line functions 

defined by the triangle edges 

• For each pixel p of the bounding box, if the 3 line functions give 

the same sign, then p is inside the triangle,  otherwise outside 

• For efficiency, the line functions are incrementally evaluated 

using their forward differences 
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Triangle Rasterization Algorithm (2) 

Algorithm: 

triangle1 ( vertex  v0, v1, v2, colour  c ) {  

line  l0, l1, l2;  

float  e0, e1, e2, e0t, e1t, e2t;  

/* Compute the line coefficients (a,b,c) from the vertices */  

mkline(v0, v1, &l0); mkline(v1, v2, &l1); mkline(v2, v0, &l2);  

/* Compute bounding box of triangle */  

bb_xmin = min(v0.x, v1.x, v2.x);  

bb_xmax = max(v0.x, v1.x, v2.x);  

bb_ymin = min(v0.y, v1.y, v2.y);  

bb_ymax = max(v0.y, v1.y, v2.y);   

/* Evaluate linear functions at (bb_xmin, bb_ymin) */  

e0 = l0.a * bb_xmin + l0.b * bb_ymin + l0.c;  

e1 = l1.a * bb_xmin + l1.b * bb_ymin + l1.c;  

e2 = l2.a * bb_xmin + l2.b * bb_ymin + l2.c;  

 

 
Graphics & Visualization: Principles & Algorithms                             Chapter 2 

36 



Triangle Rasterization Algorithm (3) 

Algorithm (continued): 

for  (y=bb_ymin; y<=bb_ymax; y++) {  

 e0t = e0; e1t = e1; e2t = e2;  

 for  (x=bb_xmin; x<=bb_xmax; x++) {  

  if  (sign(e0)==sign(e1)==sign(e2))  

   setpixel(x,y,c);  

  e0 = e0 + l0.a;  

  e1 = e1 + l1.a;  

  e2 = e2 + l2.a;  

 }  

 e0 = e0t + l0.b;  

 e1 = e1t + l1.b;  

 e2 = e2t + l2.b;  

}  

}  
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Triangle Rasterization Algorithm (4) 

• If the bounding box is large, triangle1 is wasteful 

• Another approach:  Edge Walking 

 3 Bresenham line rasterization algorithms are used to walk the edges of 

the triangle 

 Trace is done per scanline by synchronizing the line rasterizers 

 The endpoints  of a span of  inside pixels are computed for every scanline 

that intersects the  triangle and the pixels of the span are set 

 Special attention to special cases 

• Simplicity of the above algorithms makes them ideal for 

hardware implementation 
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Area Filling Algorithms 

• A simple approach is flood fill  

Algorithm: 

flood_fill  ( polygon P, colour  c ) {  

point  s;  

draw_perimeter ( P, c );  

s = get_seed_point  ( P );  

flood_fill_recur  ( s, c );  

} 
 

flood_fill_recur  ( point  ( x,y ), colour  fill_colour  ); {  

colour  c;  

c = getpixel ( x,y ); /* read current pixel colour */  

if  (c != fill_colour ) {  

 setpixel( x,y,fill_colour );  

 flood_fill_recur ((x+1,y), fill_colour  ); flood_fill_recur ((x - 1,y), fill_colour  );  

 flood_fill_recur ((x,y+1), fill_colour  ); flood_fill_recur ((x,y - 1), fill_colour  );  

 } 

} 
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Area Filling Algorithms (2) 

• For 4 – connected areas the above 4 recursive calls are sufficient 

• For 8 – connected areas 4 extra recursive calls must be added 

 flood_fill_recur((x+1,y+1), fill_colour );  

 flood_fill_recur((x+1,y - 1), fill_colour );  

 flood_fill_recur((x - 1,y+1), fill_colour );  

 flood_fill_recur((x - 1,y - 1), fill_colour );  

• Basic problem its innefficiency  
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Perspective Correction 

• The  rasterization of primitives is performed in 2D screen space 

while the properties of primitives are associated with 3D object 

vertices 

• The general projection transformation does not preserve ratios of 

distances  it is incorrect to linearly interpolate the values of 

properties in screen space 

• Perspective Correction used to obtain the correct value at a 

projected point 

• Based on the fact that projective transformations preserve cross 

ratios 
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Perspective Correction (2) 

• Example: 

 Let ad be a line segment and b its midpoint  in 3D space 

 Let a’, d’, b’ be the perspective projections of the points a, d, b  

 

 

                                                   

                      

                      

• Heckbert  provides an efficient solution to perspective 

correction: 

 Perspective division of a property: 

 Let [x, y, z, w, c]T be the pre-perspective coordinates of a vertex, 

where c is the value of a property  [x/w, y/w, z/w, c/w, 1/w]T are 

the coordinates of the projected vertex 
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Spatial Anti-aliasing  

• The primitive rasterization algorithms represent the pixel as a point 

• Pixels are not mathematical points but have a small area  aliasing 

effects 

• Aliasing effects: 

 jagged appearance of  object silhouettes         

 improperly rasterized small objects 

 incorrectly rasterized detail  
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Anti-aliasing Techniques  

• Anti-aliasing trades intensity resolution to gain spatial resolution 

 

2 categories of anti-aliasing techniques: 

• Pre-filtering:  

 extract high frequencies before sampling  

 treat the pixel as a finite area  

 compute the % contribution of each primitive in the pixel area 

• Post-filtering: 

 extract high frequencies after sampling 

 increase sampling frequency 

 results are averaged down 
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Pre-filtering Anti-aliasing Methods 

Anti-aliased Polygon Rasterization:  Catmull’s Algorithm 

• Consider each pixel as a square window 

• Clip all overlapping polygons 

• Estimate the visible area of each polygon as a % of the pixel 

 

 

 

 

• A general polygon clipping algorithm is needed, such as Greiner-

Horman (section 1.8.3) 
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Catmull’s Algorithm 

Algorithm: 

1. Clip all polygons against the pixel window   

     P0...P n- 1  : the surviving polygon pieces  

2. Eliminate  hidden surfaces :   

 (a) order  by depth polygons P0... Pn- 1  

 (b) clip  against  the area formed by subtracting  the polygons 
 from the (remaining)  pixel  window in  depth order   

   P0... Pm- 1 (m Ů n)  the visible  parts  of  polygons & 

   A0... Am- 1 their  respective  areas 

3. Compute final  pixel  color :  A0C0 + A1C1 +... + Am- 1Cm- 1 + ABCB  

    where  Ci :  the color  of  polygon I  & 

    AB,CB:  background area & its  color  

• Not practically viable:  

 Extraordinary computations 

 A polygon may not have constant color in a pixel (texture) 
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Pre-filtering Anti-aliasing Methods (2) 

Anti-aliased Line Rasterization 

• Bresenham algorithm  

 uses binary decision to select the closest pixel to the mathematical path of 

the lines  jagged lines & polygon edges 

• Lines must have certain width  modeled as thin parallelograms 

 binary decision is wrong 

 color value  depends on the % of the pixel that is covered by the line 
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Anti-aliased Line Rasterization  

• An example: 

 

 

 

 

 

• Line in the 1st octant with slope 

• 2 pixels partially covered by the line 

• Determine the portions of the triangles A1 & A2 
  

• Color of the top pixel       = color of line at a portion A2 

• Color of the bottom pixel = color of line at a portion (1-A1) 

• The areas of the triangles:                      
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Post-filtering Anti-aliasing Methods 

• More than 1 sample per pixel  image at a higher resolution 

• The results are averaged down to the resolution of the pixel grid 

• Most common technique due to its simplicity 

• An example: 

 to create an 1024 × 1024 image, take 3072 ×  3072 samples 

 9 samples per pixel (3 horizontally × 3 vertically) 

 3 × 3 virtual image pixels correspond to 1 final image pixel 

 the final pixel’s color is the average of the 9 samples 
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Post-filtering Algorithm 

Algorithm: 

1. The (continuous)  image is  sampled at  s times the final  pixel  
resolution  (s  horizontally  × s vertically)  creating  a virtual  

image I u.   

2. The virtual  image is  low- pass filtered  to  eliminate  the    
high frequencies  that  cause aliasing .   

3. The filtered  virtual  image is  re- sampled at  the pixel     
resolution  to  produce the final  image I f  

 

• Use s×s convolution filter h instead of averaging the s×s samples  

• Steps: 

 Place the filter over the virtual image pixel 

 Compute the final image value:  

 Move the filter 
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Post-filtering Algorithm (2) 

• Examples of convolution filters: 

 

 

 

 

• To avoid color shifts, normalize: 

 

 

• The larger the s is  better results 

• Drawbacks:  

 s   image generation time &  memory required 

 no matter how big s becomes, the aliasing problem will remain 

 not sensitive to image complexity   a lot of wasted computations 
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More Post-filtering Algorithms 

• Adaptive post-filtering:  

 Increases the sampling rate where high frequencies exist 

 More complex algorithm 

• Stochastic post-filtering: 

 Samples the continuous image at non-uniformly spaced positions 

 Aliasing effects are converted to noise (human eye ignores them) 
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2D Clipping Algorithms 

• Avoid giving out-of-range values to a display device 

• Clipping object (window): display device usually modeled as 

rectangular parallelogram which defines the within-range values  

• Subject: primitive of a modeled scene 

• Generalization from 2D to 3D is relatively straightforward 

• Subject relation to the clipping object 

 Subject entirely inside: rasterize it 

 Subject outside: do not rasterize 

 Subject intersects the clipping object: compute the intersection with a 2D 

clipping algorithm & rasterize the result 
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Point Clipping 

• Point clipping is a trivial case: 

 is point (x, y) inside the clipping object ? 

• If the clipping object is a rectangular parallelogram: 

 Exploit its opposite vertices (xmin, ymin), (xmax,  ymax)  

• Inclusion Test: 

 If 

 Then the point is entirely inside and must be rasterized 

 Else the point is entirely outside and must NOT be rasterized 
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Line Clipping - CS Algorithm 

Cohen – Sutherland (CS) Algorithm 

• Perform a low-cost test which decides if a line segment is 

entirely inside or entirely outside the clipping window 

• For each non-trivial line segment compute its intersection with 

one of the lines defined by the window boundary 

• Recursively apply the algorithm to both resultant line segments 

 

Graphics & Visualization: Principles & Algorithms                             Chapter 2 
55 



Line Clipping - CS Algorithm (2) 

• The plane of the clipping window is divided into 9 regions 

• Each region is assigned a 4 – bit binary code 

• The code bits are set according to the following rules: 

 First Bit: Set 1 for y > ymax, else set 0 

 Second Bit: Set 1 for y < ymin, else set 0 

 Third Bit: Set 1 for x > xmax, else set 0 

 Fourth Bit: Set 1 for x < xmin, else set 0 

 

 

Graphics & Visualization: Principles & Algorithms                             Chapter 2 
56 



Line Clipping - CS Algorithm (3) 

• Let the 4 – bit codes of the endpoints of a line segment be c1, c2 

• Each endpoint is assigned a 4 – bit code according to the above 

rules 

• Then the low-cost inclusion tests are: 

 If 

    Then the line segment is entirely inside 

 

 If 

    Then the line segment is entirely outside 
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Line Clipping - CS Algorithm (4) 

• Example : 

 

 

 

 

• ab is entirely outside since 0001    0101 ≠ 0000 

• cd is entirely inside since 0000    0000 = 0000 

• For ef & gh the extent tests are not conclusive  compute the intersection 

points 

• Intersect ef with line y = ymin since the 2nd bit of the code is different at e & f 

• Continue with the if line segment as the 2nd bit of the code of the f vertex has 

value 0 (inside) 

• For gh compute one of the intersection points k & continue with gk which 

then computes the intersection j & recurses with a trivial inside decision for 

jk 
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Line Clipping - CS Algorithm (5) 

Algorithm: 

CS_Clip (  vertex  p1,  p2,  float  xmin,  xmax,  ymin,  ymax )  {  

int  c1,  c2;    vertex  i ;    edge e;  

c1 = mkcode (p1) ;    c2 = mkcode (p2) ;  

if  ((c 1 |  c2)  == 0)           

 /*  p1p2 is  inside  */  

else  if  ((c 1 & c2)  !=  0)      

 /*  p1p2 is  outside  */  

else  {  

        e= /*  window line  with  (c 1 bit  !=  c2 bit)  */  

        i  = intersect_lines  (e,  (p1,p 2)) ;  

        if  outside  (e,  p1)    

   CS_Clip( i ,  p2,  xmin,  xmax,  ymin,  ymax);  

        else  

                CS_Clip(p1,  i ,  xmin,  xmax,  ymin,  ymax);  

      }  

}  
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Line Clipping - Skala Algorithm 

Skala Algorithm: 

• Gain in efficiency over CS algorithm by classifying the vertices 

of the clipping window relative to the line segment being clipped 

• A binary code ci is assigned to each clipping window vertex  

 vi = (xi, yi) as follows: 

•    1 , l(xi, yi) ≥ 0 

  ci   =    

              0, otherwise 

where l(x, y) is the function defined by the line segment to 

be clipped 

• ci indicates the side of the line segment that vertex vi lies in 
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Line Clipping - Skala Algorithm (2) 

• The codes are computed by taking the vertices in a consistent 

order around the clipping window (e.g. counterclockwise) 

 

• A clipping window edge is intersected by the line segment for 

every change in the coding of the vertices (from 0 to 1 or from 1 

to 0) 

 

• A pre - computed table directly gives the clipping window edges 

intersected by the line segment from the code vector [c0 ,c1 ,c2 ,c3] 

and this replaces the recursive case of the CS algorithm 
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Line Clipping – LB Algorithm 

Liang – Barsky (LB) Algorithm 

• Solves the line clipping problem without using recursive calls 

• Compared to CS algorithm, LB is more than 30% more efficient 

• Can be easily extended to a 3D clipping object  

• LB is based on the parametric equation of the line segment to be 

clipped from p1(x1, y1) to p2(x2, y2): 

   P = p1 + t (p2 - p1),  t      [0, 1] 

 or 

   x = x1 + t Δx ,  y = y1 + t Δy  

 where 

   Δx =  x2 - x1  , Δy =  y2 - y1  
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Line Clipping – LB Algorithm (2) 

• For the part of the line segment that is inside the clipping 

window: 

    xmin ≤ x1 + t Δx ≤ xmax , 

    ymin ≤ y1 + t Δy ≤ ymax 

 

 or 

   -t Δx  ≤  x1 - xmin  , 

    t Δx  ≤  xmax – x1 , 

    -t Δy  ≤  y1 - ymin , 

    t Δy  ≤  ymax – y1  
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Line Clipping – LB Algorithm (3) 

• The above inequalities have the common form:   

  t pi  ≤  qi  , 

 where 

  p1 = -Δx , q1 = x1 - xmin  

   

  p2 =   Δx , q2 = xmax – x1  

   

  p3 = -Δy , q3 = y1 - ymin  

   

  p4 =  Δy , q4 = ymax – y1  
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Line Clipping – LB Algorithm (4) 

• Notice the following: 

 If pi = 0 the line segment is parallel to the window edge i and 

the clipping problem is trivial 

 If pi ≠ 0 the parametric value of the point of intersection of 

the line segment with the line defined by window edge i is 

    ti = qi / pi 

 If pi < 0 the directed line segment is incoming with respect to  

window edge i 

 If pi > 0 the directed line segment is outgoing with respect to  

window edge i 
 

 

Graphics & Visualization: Principles & Algorithms                             Chapter 2 
65 



Line Clipping – LB Algorithm (5) 

• Therefore  tin and tout can be computed as: 

 

             

• Sets {0}, {1} clamp the starting and ending parametric values at 

the end points of the line segment 

• If  tin ≤ tout, the values tin and tout are plugged into parametric line 

equation to get the actual starting – ending points of the clipped 

segment 

• Otherwise there is no intersection with the clipping window 
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Line Clipping – LB Algorithm (6) 

Graphics & Visualization: Principles & Algorithms                             Chapter 2 
67 

LB example: 

• Compute:     Δx = 2.5 and Δy = 2.5 

• Compute:  

 

 

 

• Compute: 

• Since tin < tout compute endpoints                                    of the 

clipped line segment using the parametric equation:                       

1 1

2 2

3 3

4 4

p =-2.5, q =-0.5

p =2.5,  q =3.5

p =-2.5, q =-0.5

p =2.5,  q =3.5.

1 1 in

1 1 in

2 1 out

2 1 out

x = x + t Δx = 0.5 + 0.2 · 2.5 = 1

y = y + t Δy = 0.5 + 0.2 · 2.5 = 1

x = x + t Δx  = 0.5 + 1 · 2.5  = 3

y = y + t Δy  = 0.5 + 1 · 2

'

.

 

'

5 

 

' 

'  = 3

1 1 2 2( , ),  ( ,' ' ' ' ' ')x y x y
1 2

p p

31 2 4

1 3 2 4

max({ , } {0}) 0.2 ,  min({ , } {1}) 1in out

qq q q
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Polygon Clipping 
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• In 2D polygon clipping the subject and clipping object are both 

polygons (subject polygon, clipping polygon) 

• Why is polygon clipping important ? 

 

 

 

 

 

 

 

 

• Polygon clipping cannot be regarded as multiple line clipping 



Polygon Clipping – SH Algorithm 
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Sutherland – Hodgman (SH) Algorithm: 

• Clips an arbitrary subject polygon against a convex clipping polygon 

• Has m pipeline stages which correspond to the m edges of the clipping 

polygon 

• Stage i | i: 0…m-1 clips the subject polygon against the line defined by edge i 

of the clipping polygon 

• The input to stage i | i: 1…m-1 is the output of stage i-1 

• Polygon is restricted to be convex 

 

 

 

 

 

 

 

 



Polygon Clipping – SH Algorithm (2) 
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• For each stage of the SH algorithm there are the following 4 

relationships between a clipping line and an object polygon edge 

vkvk+1 

 

 

 

 

 

 

 

 



Polygon Clipping – SH Algorithm (3) 
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• Example of the 1st stage of the SH algorithm: 

 

 

 

 

 

 

 

 



Polygon Clipping – SH Algorithm (4) 
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• Algorithm: 

polygon SH_Clip ( polygon C, S ) { /*C must be convex*/  

 int  i , m;  

 edge e;  

 polygon InPoly , OutPoly;  

 m = getedgenumber(C);  

 InPoly  = S;  

 for  ( i =0; i <m; i ++) {  

  e = getedge( C,i );  

  SH_Clip_Edge( e,InPoly,OutPoly );  

  InPoly  = OutPoly 

  } 

 return  OutPoly 

} 



Polygon Clipping – SH Algorithm (5) 
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• Algorithm: 
SH_Clip_Edge ( edge e, polygon InPoly , OutPoly ) {  

 int  k, n; vertex  vk, vkplus1, i ;  

 n = getedgenumber( InPoly );  

 for  (k=0; k<n; k++) {  

  vk = getvertex ( InPoly,k ); vkplus1= getvertex ( InPoly ,(k+1) mod n);  

  if  (inside(e, vk) and inside(e, vkplus1))  

   /* Case 1 */  

   putvertex (OutPoly,vkplus1)  

  else if  (inside(e, vk) and !inside(e, vkplus1)) {  

   /* Case 2 */  

   i  = intersect_lines (e, (vk,vkplus1)); putvertex ( OutPoly,i )  

  } 

  else if  (!inside(e, vk) and !inside(e, vkplus1))  

   /* Case 3 */  

  else {  

   /* Case 4 */  

   i  = intersect_lines (e, (vk,vkplus1)); putvertex ( OutPoly,i );   
  putvertex (OutPoly,vkplus1)  

  } 

 } 

} 



Polygon Clipping – SH Algorithm (6) 
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• The complexity of SH algorithm is O(mn) where m and n are the 

numbers of vertices of the clipping and subject polygons 

respectively 

 

• No complex data structures or operations are required so the SH 

algorithm is quite efficient 

 

• The SH algorithm is appropriate for hardware implementation 

since the clipping polygon, in general, is constant 



Polygon Clipping – GH Algorithm  
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Greiner – Hormann Algorithm 

• Suitable for general clipping polygons (C) and subject polygons 

(S) 

• The polygons can be arbitrary closed polygons, even self 

intersecting 

• The complexity of step 1 and 2 is O(mn) where m and n are the 

numbers of vertices of the C and S polygon respectively 

• The overall complexity of the GF algorithm is O(mn) 

• In practice, the complex data structures used in GF algorithm 

makes it less efficient than the SH algorithm 



Polygon Clipping – GH Algorithm (2) 
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• GH algorithm is based on the winding number test for point p in 

polygon  P, symbolically  

 

•                 does not change so long as the topological relation of 

the point p and the polygon P remains constant 

 

• If p crosses P the                 is incremented or decremented 

 

• If                  is odd then p is inside P, otherwise it is outside  

 

( , )P p

( , )P p

( , )P p

( , )P p



Polygon Clipping – GH Algorithm (3) 
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• The 3 steps of the GH algorithm: 

 1.  Trace the perimeter S starting from a vertex vs0. An 

 imaginary  stencil toggles between on and off state every 

 time the perimeter of  C is crossed. Its initial state is on if 

 vs0 is inside C and off otherwise. It thus computes the part of 

 the perimeter of S that is inside C 

 2.  As step 1 but reverse the roles of S and C. The part of the 

 perimeter of C that is inside S is thus computed 

 3.  The union of the results of steps 1 and 2 is the result of 

 clipping S against C (or equivalently C against S) 



Polygon Clipping – GH Algorithm (4) 
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• GH algorithm example: 

 (a) The initial S, C polygons 

 

 (b) After step 1 of GH 

  

 (c) After step 2 of GH 

  

 (d) The final result 



Polygon Clipping – GH Algorithm (5) 
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• GH algorithm computes the intersection of the areas of 2 

polygons, C      S 

• It easily generalizes to compute C  S, C – S and S – C by 

changing the initial states of the stencils for S and C 

• Obviously there are 4 possible combinations of the initial state 

• These generalizations are not useful for the clipping problem 

 


