
Graphics & Visualization

Chapter 2

Rasterization Algorithms

Graphics & Visualization: Principles & Algorithms

Graphics & Visualization: Principles & Algorithms Chapter 2
2

• 2D display devices consist of discrete grid of pixels

• Rasterization: converting 2D primitives into a discrete pixel

representation

• The complexity of rasterization is O(Pp), where P is the number

of primitives and p is the number of pixels

• There are 2 main ways of viewing the grid of pixels:

 Half – Integer Centers

 Integer Centers (shall be used)

• Connectedness: which are the neighbors of a pixel?

 4 – connectedness

 8 – connectedness

• Challenges in designing a rasterization algorithm:

 Determine the pixels that accuracy describe the primitive

 Efficiency

Rasterization

Graphics & Visualization: Principles & Algorithms Chapter 2
3

• Half – Integer Centers Integer Centers

• 4 – Connectedness 8 - Connectedness

Rasterization (2)

Graphics & Visualization: Principles & Algorithms Chapter 2
4

Mathematical Curves

• Two mathematical forms:

 Implicit Form:

e.g.:

 Parametric Form:

 Function of a parameter t [0, 1]

 t corresponds to arc length along the curve

 The curve is traced as t goes from 0 to 1

e.g.: l(t) = (x(t), y(t))

0, implies point(x,y) is 'inside' the curve

(,) 0, implies point(x,y) is on the curve

0, implies point(x,y) is 'outside' the curve

f x y

Graphics & Visualization: Principles & Algorithms Chapter 2
5

Mathematical Curves (2)

• Examples:

 Implicit Form:

 line:

 where a, b, c : line coefficients

 if l(x, y) = 0 then point (x, y) is on the curve

 else if l(x, y) < 0 then point (x, y) is on one half-plane

 else if l(x, y) > 0 then point (x, y) is on the other half-plane

 circle:

 where (xc, yc) : the center of the circle & r: circle’s radius

 if c(x, y) = 0 then point (x, y) is on the circle

 else if c(x, y) < 0 then point (x, y) is inside the circle

 else if c(x, y) > 0 then point (x, y) is outside the circle

(,) 0l x y ax by c

2 2 2(,) () () 0c cc x y x x y y r

Graphics & Visualization: Principles & Algorithms Chapter 2
6

Mathematical Curves (3)

• Examples:

Parametric Form:

 line: l(t) = (x(t), y(t))

 where x(t) = x1 + t (x2- x1) ,

 y(t) = y1 + t (y2 –y1) ,

 t [0,1]

 circle: c(t) = (x(t), y(t))

 where x(t) = xc + r cos(2πt) ,

 y(t) = yc + r sin(2πt),

 t [0,1]

Finite Differences

• Functions that define primitives need to be evaluated on the

pixel grid for each pixel  wasteful

• Cut this cost by taking advantage of finite differences

• Forward differences (fd):

 First (fd) :

 Second (fd):

 kth (fd):

• Implicit functions can be used to decide if the pixel belongs to

the primitive

 e.g.: pixel(x, y) is included if |f(x, y)|< e,

 where e: related to the line width

Graphics & Visualization: Principles & Algorithms Chapter 2
7

2

1i i if f f   
1i i if f f  

1 1

1

k k k

i i if f f   

 

Finite Differences (2)

• Examples:

 Evaluation of the line function incrementally:

 from pixel (x, y) to pixel (x+1, y)

 Calculation of the forward differences of the implicit line equation

 in the x direction from pixel x to pixel x+1:

 Compute

 from pixel (x, y) to pixel (x+1, y)

 Calculation of the forward differences of the implicit line equation

 in the y direction from pixel y to pixel y+1:

 Compute

Graphics & Visualization: Principles & Algorithms Chapter 2
8

(,) (1,) (,)xl x y l x y l x y a

(,) (, 1) (,)yl x y l x y l x y b

(,) (,) (,)xl x y l x y l x y a

(,) (,) (,)yl x y l x y l x y b

Finite Differences (3)

• Examples:

 Evaluation of the circle function incrementally:

 from pixel (x, y) to pixel (x+1, y)

 Calculation of the forward differences of the implicit circle equation.

 Since it has degree 2 there are two forward differences in the x

 direction from pixel x to pixel x+1:

 Compute

from pixel (x, y) to pixel (x, y+1): similar by adding

Graphics & Visualization: Principles & Algorithms Chapter 2

9

2

(,) (1,) (,) 2() 1

(,) (1,) (,) 2

x c

x x x

c x y c x y c x y x x

c x y c x y c x y

2(,) (1,) (,)

(1,) (,) (,)

x x x

x

c x y c x y c x y

c x y c x y c x y

2(,) and δ (,)y yc x y c x y

Line Rasterization

• Desired qualities of a line rasterization algorithm:

 Selection of the nearest pixels to the mathematical path of the line

 Constant line width, independent of the slope of the line

 No gaps

 High efficiency

 The 8 octants with an example line in the first octant

Graphics & Visualization: Principles & Algorithms Chapter 2
10

Line Rasterization Algorithm 1
• Draw a line from pixel ps = (xs, ys) to pixel pe = (xe, ye) in the first octant

• Slope of the line:

Algorithm:

line1 (int xs, int ys, int xe, int ye, colour c) {

 float s; int x, y;

 s = (ye - ys) / (xe - xs); (x, y) = (xs, ys);

 while (x <= xe) {

 setpixel (x, y, c);

 x = x + 1;

 y = ys + round(s * (x - xs));

 }

}

 Graphics & Visualization: Principles & Algorithms Chapter 2
11

Line Rasterization Algorithm 1 (2)

• Using line1 algorithm in the first and second octants:

Graphics & Visualization: Principles & Algorithms Chapter 2
12

Line Rasterization Algorithm 2
• Avoid rounding operation by splitting y value into an integer and a float part e

• Compute its value incrementally

Algorithm:

line2 (int xs, int ys, int xe, int ye, colour c) {

 float s, e; int x, y;

 e = 0; s = (ye - ys) / (xe - xs); (x, y) = (xs, ys);

 while (x <= xe) {

 /* assert - 1/2 <= e < 1/2 */

 setpixel(x, y, c);

 x = x + 1;

 e = e + s;

 if (e >= 1/2) {

 y = y + 1;

 e = e - 1;

 }

 }

}

 Graphics & Visualization: Principles & Algorithms Chapter 1
13

Line Rasterization Algorithm 2 (2)
• Algorithm line2 resembles the leap year calculation

• The slope is added to the e variable at each iteration until it

makes up more than half a unit & then the line leaps up by 1.

• The integer y variable is incremented and e is correspondingly

reduced, so that the sum of the 2 variables is unchanged.

• Similarly, the year has approximately 365,25 days but

calendars are designed with an integer number of days.

• We add a day every 4 years to make up for the error being

accumulated.

Graphics & Visualization: Principles & Algorithms Chapter 1
14

Bresenham Line Algorithm
• Replace the floating point variables in line2 by integers

• Multiplying the leap decision variables by dx = xe – xs makes s

and e integers

• The leap decision becomes e ≥ because e is integer

• can be computed by a numerical shift

• For more efficiency replace the test e ≥ by e ≥ 0 using

 an initial subtraction of from e

Graphics & Visualization: Principles & Algorithms Chapter 2
15

2

dx

2

dx

2

dx

2

dx

Bresenham Line Algorithm (2)
• Floating point variables are replaced by integers

Algorithm

line3 (int xs, int ys, int xe, int ye, colour c) {

 int x, y, e, dx, dy;

 e = - (dx >> 1); dx = (xe - xs); dy=(ye - ys); (x, y)=(xs, ys);

 while (x <= xe) {

 /* assert - dx <= e < 0 */

 setpixel(x, y, c);

 x = x + 1;

 e = e + dy;

 if (e >= 0) {

 y = y + 1;

 e = e - dx;

 }

 }

}

Graphics & Visualization: Principles & Algorithms Chapter 2
16

Bresenham Line Algorithm (3)

• Suitable for lines in the first octant

• Changes for other octants according to the following table

• Meets the requirements of a good line rasterization algorithm

Graphics & Visualization: Principles & Algorithms Chapter 2

17

Circle Rasterization

• Circles possess 8–way symmetry

• Compute the pixels of one octant

• Pixels of other octants are derived using the symmetry

Graphics & Visualization: Principles & Algorithms Chapter 2
18

Circle Rasterization Algorithm

• The following algorithm exploits 8–way symmetry

Algorithm:

set8pixels (int x, y, colour c) {

 setpixel(x, y, c);

 setpixel(y, x, c);

 setpixel(y, - x, c);

 setpixel(x, - y, c);

 setpixel(- x, - y, c);

 setpixel(- y, - x, c);

 setpixel(- y, x, c);

 setpixel(- x, y, c);

}

Graphics & Visualization: Principles & Algorithms Chapter 2
19

Bresenham Circle Algorithm

• The radius of the circle is r

• The center of the circle is pixel (0, 1)

• The algorithm starts with pixel (0, r)

• It draws a circular arc in the second octant

• Coordinate x is incremented at every step

• If the value of the circle function becomes non-negative (pixel

not inside the circle), y is decremented

Graphics & Visualization: Principles & Algorithms Chapter 2
20

Bresenham Circle Algorithm (2)

• To center the selected pixels on the circle use a circle function

which is displaced by half a pixel upwards; the circle center

becomes (0, ½)

• Initialize the error variable to:

• Since error is an integer variable the ¼ can be dropped

• e keeps the value of the implicit circle function

• For the incremental evaluation of e use the finite differences of

that function for the 2 possible steps of the algorithm

Graphics & Visualization: Principles & Algorithms Chapter 2
21

2 2 21
(,) () 0

2
c x y x y r    

2 21 1
(0,) ()

2 4
c r r r r    

2 2

2 2

(1,) (,) (1) 2 1

3 1
(, 1) (,) () () 2 2

2 2

c x y c x y x x x

c x y c x y y y y

      

        

Bresenham Circle Algorithm (3)

Algorithm:

circle (int r, colour c) {

 int x, y, e;

 x = 0; y = r; e = - r;

 while (x <= y) {

 /* assert e == x^2 + (y - 1/2)^2 - r^2 */

 set8pixels(x, y, c);

 e = e + 2 * x + 1;

 x = x + 1;

 if (e >= 0) {

 e = e ͠ 2 * y + 2;

 y = y - 1;

 }

 }

 }

Graphics & Visualization: Principles & Algorithms Chapter 2
22

Point in Polygon Tests

• Polygon: n vertices (v0, …, vn-1) form a closed curve

 n edges v0, v1, …, vn-1, v0

• Jordan Curve Theorem: A continuous simple closed curve in

the plane separates the plane into 2 regions. The ‘inside’ and the

‘outside’

• For efficient rasterization we need to know if a pixel p is inside a

polygon P. There are two types of inclusion tests:

 Parity test

 Winding number

Graphics & Visualization: Principles & Algorithms Chapter 2

23

Point in Polygon Tests (2)
• Parity Test:

 Draw a half line from pixel p in any direction

 Count the number of intersections of the line with the polygon P

 If #intersections == odd number then p is inside P

 Otherwise p is outside P

Graphics & Visualization: Principles & Algorithms Chapter 2
24

Point in Polygon Tests (3)

• Winding Number Test:

 ω(P, p) counts the # of revolutions completed by a ray from p that traces P

 For every counterclockwise revolution ω(P, p) ++

 For every clockwise revolution ω(P, p)--

 If ω(P, p) is odd then p is inside P

 Otherwise p is outside P

Graphics & Visualization: Principles & Algorithms Chapter 2
25

1
(,)

2
P p d

Point in Polygon Tests (4)

• The winding number test for point in polygon:

• Simple computation of the winding number:

• The sign test for point in convex polygon:

 sign(lo(p)) = sign(l1(p)) = … = sign(ln-1(p))

Graphics & Visualization: Principles & Algorithms Chapter 2
26

Polygon Rasterization

• Basic Polygon Rasterization Algorithm:

 Based on the parity test

 Steps:

1. Compute intersections I(x, y) of every edge with all the scanlines it intersects & store

them in a list

2. Sort the intersections by (y, x)

3. Extract spans from the list & set the pixels between them

Graphics & Visualization: Principles & Algorithms Chapter 2
27

Singularities

• Basic Polygon Rasterization Algorithm:

 inefficient due to the cost of intersection computations

• Problem:

 if a polygon vertex falls exactly on a scanline:

 count 2, 1 or 0 intersections ?

• Solutions:

 regard edge as closed on the vertex with min y and open on

the vertex with max y

 ignore horizontal edges

Graphics & Visualization: Principles & Algorithms Chapter 2
28

Singularities (2)

• Rule for Treating Intersection Singularities

• Effect of Singularities Rule on Singularities

Graphics & Visualization: Principles & Algorithms Chapter 2
29

Scanline Polygon Rasterization Algorithm

• Takes advantage of scanline coherence & edge coherence

• Uses an Edge Table (ET) and an Active Edge Table (AET)

Algorithm:

1. Construct the polygon ET,containing the maximum y, the min x
and the inverse slope of each edge (y max, xmin, 1/s) . The

 record of an edge is inserted in the bucket of its minimum y
coordinate .

2. For every scanline y that intersects the polygon in an upward
sweep

 (a) Update the AET edge intersections for the current scanline :

 x = x + 1/s .

 (b) Insert edges from y bucket of ET into AET.

 (c) Remove edges from AET whose ymax Ů y.

 (d) Re- sort AET on x.

 (e) Extract spans from the AET and set their pixels .

Graphics & Visualization: Principles & Algorithms Chapter 2

30

Scanline Polygon Rasterization Algorithm (2)

• A polygon and its Edge Table (ET)

• Example states of the AET

Graphics & Visualization: Principles & Algorithms Chapter 2
31

Scanline Polygon Rasterization Algorithm (3)

• The edges that populate the AET change at polygon vertices

according to the following figure:

 Updating the AET

Graphics & Visualization: Principles & Algorithms Chapter 2
32

Critical points Polygon Rasterization Algorithm

• Uses the local minima (critical points) explicitly in order to

make ET redundant and to avoid its expensive creation

• An example polygon (above) and the contents of the AET for 3

scanlines (below)

Graphics & Visualization: Principles & Algorithms Chapter 2
33

Critical points Polygon Rasterization Algorithm

Algorithm:

1. Find and store the critical points of the polygon.

2. For every scanline y that intersects the polygon in an upward sweep

(a) For every critical point c(c x,c y) | (y - 1 < cy Ů y) track the perimeter
of the polygon in both directions starting at c. Tracking stops if
scanline y is intersected or a local maximum is found. For every
intersection with scanline y create an AET record (v, ± 1, x)
containing the start vertex number v of the intersecting edge, the
tracking direction along the perimeter of the polygon (- 1 or +1
depending on whether it is clockwise or counterclockwise) and the x
coordinate of the point of intersection .

(b) For every AET record that pre- existed step (a), track the polygon
perimeter in the direction stored within it . If an intersection with
scanline y is found, the record's start vertex number and
intersection x coordinate are updated. If a local maximum is found
the record is deleted from the AET.

(c) Sort the AET on x if necessary.

(d) Extract spans from the AET and set their pixels.

 Graphics & Visualization: Principles & Algorithms Chapter 2
34

Triangle Rasterization Algorithm

• Triangle: simplest, planar, convex polygon

• Determine the pixels covered by a triangle  perform an inside

test on all the pixels of the triangle’s bounding box

• The inside test can be the evaluation of the 3 line functions

defined by the triangle edges

• For each pixel p of the bounding box, if the 3 line functions give

the same sign, then p is inside the triangle, otherwise outside

• For efficiency, the line functions are incrementally evaluated

using their forward differences

Graphics & Visualization: Principles & Algorithms Chapter 2
35

Triangle Rasterization Algorithm (2)

Algorithm:

triangle1 (vertex v0, v1, v2, colour c) {

line l0, l1, l2;

float e0, e1, e2, e0t, e1t, e2t;

/* Compute the line coefficients (a,b,c) from the vertices */

mkline(v0, v1, &l0); mkline(v1, v2, &l1); mkline(v2, v0, &l2);

/* Compute bounding box of triangle */

bb_xmin = min(v0.x, v1.x, v2.x);

bb_xmax = max(v0.x, v1.x, v2.x);

bb_ymin = min(v0.y, v1.y, v2.y);

bb_ymax = max(v0.y, v1.y, v2.y);

/* Evaluate linear functions at (bb_xmin, bb_ymin) */

e0 = l0.a * bb_xmin + l0.b * bb_ymin + l0.c;

e1 = l1.a * bb_xmin + l1.b * bb_ymin + l1.c;

e2 = l2.a * bb_xmin + l2.b * bb_ymin + l2.c;

Graphics & Visualization: Principles & Algorithms Chapter 2

36

Triangle Rasterization Algorithm (3)

Algorithm (continued):

for (y=bb_ymin; y<=bb_ymax; y++) {

 e0t = e0; e1t = e1; e2t = e2;

 for (x=bb_xmin; x<=bb_xmax; x++) {

 if (sign(e0)==sign(e1)==sign(e2))

 setpixel(x,y,c);

 e0 = e0 + l0.a;

 e1 = e1 + l1.a;

 e2 = e2 + l2.a;

 }

 e0 = e0t + l0.b;

 e1 = e1t + l1.b;

 e2 = e2t + l2.b;

}

}

 Graphics & Visualization: Principles & Algorithms Chapter 2
37

Triangle Rasterization Algorithm (4)

• If the bounding box is large, triangle1 is wasteful

• Another approach: Edge Walking

 3 Bresenham line rasterization algorithms are used to walk the edges of

the triangle

 Trace is done per scanline by synchronizing the line rasterizers

 The endpoints of a span of inside pixels are computed for every scanline

that intersects the triangle and the pixels of the span are set

 Special attention to special cases

• Simplicity of the above algorithms makes them ideal for

hardware implementation

Graphics & Visualization: Principles & Algorithms Chapter 2
38

Area Filling Algorithms

• A simple approach is flood fill

Algorithm:

flood_fill (polygon P, colour c) {

point s;

draw_perimeter (P, c);

s = get_seed_point (P);

flood_fill_recur (s, c);

}

flood_fill_recur (point (x,y), colour fill_colour); {

colour c;

c = getpixel (x,y); /* read current pixel colour */

if (c != fill_colour) {

 setpixel(x,y,fill_colour);

 flood_fill_recur ((x+1,y), fill_colour); flood_fill_recur ((x - 1,y), fill_colour);

 flood_fill_recur ((x,y+1), fill_colour); flood_fill_recur ((x,y - 1), fill_colour);

 }

}

Graphics & Visualization: Principles & Algorithms Chapter 2

39

Area Filling Algorithms (2)

• For 4 – connected areas the above 4 recursive calls are sufficient

• For 8 – connected areas 4 extra recursive calls must be added

 flood_fill_recur((x+1,y+1), fill_colour);

 flood_fill_recur((x+1,y - 1), fill_colour);

 flood_fill_recur((x - 1,y+1), fill_colour);

 flood_fill_recur((x - 1,y - 1), fill_colour);

• Basic problem its innefficiency

Graphics & Visualization: Principles & Algorithms Chapter 2
40

Perspective Correction

• The rasterization of primitives is performed in 2D screen space

while the properties of primitives are associated with 3D object

vertices

• The general projection transformation does not preserve ratios of

distances  it is incorrect to linearly interpolate the values of

properties in screen space

• Perspective Correction used to obtain the correct value at a

projected point

• Based on the fact that projective transformations preserve cross

ratios

Graphics & Visualization: Principles & Algorithms Chapter 2
41

Perspective Correction (2)

• Example:

 Let ad be a line segment and b its midpoint in 3D space

 Let a’, d’, b’ be the perspective projections of the points a, d, b

• Heckbert provides an efficient solution to perspective

correction:

 Perspective division of a property:

 Let [x, y, z, w, c]T be the pre-perspective coordinates of a vertex,

where c is the value of a property  [x/w, y/w, z/w, c/w, 1/w]T are

the coordinates of the projected vertex

Graphics & Visualization: Principles & Algorithms Chapter 2
42

1
ab

bd
 ,

ac a c

cd c d
ab a b

bd b d

a b
q

b d

ac a c

cd qc d

Spatial Anti-aliasing

• The primitive rasterization algorithms represent the pixel as a point

• Pixels are not mathematical points but have a small area  aliasing

effects

• Aliasing effects:

 jagged appearance of object silhouettes

 improperly rasterized small objects

 incorrectly rasterized detail

Graphics & Visualization: Principles & Algorithms Chapter 2
43

Anti-aliasing Techniques

• Anti-aliasing trades intensity resolution to gain spatial resolution

2 categories of anti-aliasing techniques:

• Pre-filtering:

 extract high frequencies before sampling

 treat the pixel as a finite area

 compute the % contribution of each primitive in the pixel area

• Post-filtering:

 extract high frequencies after sampling

 increase sampling frequency

 results are averaged down

Graphics & Visualization: Principles & Algorithms Chapter 2
44

Pre-filtering Anti-aliasing Methods

Anti-aliased Polygon Rasterization: Catmull’s Algorithm

• Consider each pixel as a square window

• Clip all overlapping polygons

• Estimate the visible area of each polygon as a % of the pixel

• A general polygon clipping algorithm is needed, such as Greiner-

Horman (section 1.8.3)

Graphics & Visualization: Principles & Algorithms Chapter 2

45

Catmull’s Algorithm

Algorithm:

1. Clip all polygons against the pixel window 

 P0...P n- 1 : the surviving polygon pieces

2. Eliminate hidden surfaces :

 (a) order by depth polygons P0... Pn- 1

 (b) clip against the area formed by subtracting the polygons
 from the (remaining) pixel window in depth order 

 P0... Pm- 1 (m Ů n) the visible parts of polygons &

 A0... Am- 1 their respective areas

3. Compute final pixel color : A0C0 + A1C1 +... + Am- 1Cm- 1 + ABCB

 where Ci : the color of polygon I &

 AB,CB: background area & its color

• Not practically viable:

 Extraordinary computations

 A polygon may not have constant color in a pixel (texture)

Graphics & Visualization: Principles & Algorithms Chapter 2

46

Pre-filtering Anti-aliasing Methods (2)

Anti-aliased Line Rasterization

• Bresenham algorithm

 uses binary decision to select the closest pixel to the mathematical path of

the lines  jagged lines & polygon edges

• Lines must have certain width  modeled as thin parallelograms

 binary decision is wrong

 color value depends on the % of the pixel that is covered by the line

Graphics & Visualization: Principles & Algorithms Chapter 2
47

Anti-aliased Line Rasterization

• An example:

• Line in the 1st octant with slope

• 2 pixels partially covered by the line

• Determine the portions of the triangles A1 & A2

• Color of the top pixel = color of line at a portion A2

• Color of the bottom pixel = color of line at a portion (1-A1)

• The areas of the triangles:

Graphics & Visualization: Principles & Algorithms Chapter 2

48

a
s

b
 

2

1
2

d
A

s


2

2

()

2

s d
A

s




Post-filtering Anti-aliasing Methods

• More than 1 sample per pixel  image at a higher resolution

• The results are averaged down to the resolution of the pixel grid

• Most common technique due to its simplicity

• An example:

 to create an 1024 × 1024 image, take 3072 × 3072 samples

 9 samples per pixel (3 horizontally × 3 vertically)

 3 × 3 virtual image pixels correspond to 1 final image pixel

 the final pixel’s color is the average of the 9 samples

Graphics & Visualization: Principles & Algorithms Chapter 2
49

Post-filtering Algorithm

Algorithm:

1. The (continuous) image is sampled at s times the final pixel
resolution (s horizontally × s vertically) creating a virtual

image I u.

2. The virtual image is low- pass filtered to eliminate the
high frequencies that cause aliasing .

3. The filtered virtual image is re- sampled at the pixel
resolution to produce the final image I f

• Use s×s convolution filter h instead of averaging the s×s samples

• Steps:

 Place the filter over the virtual image pixel

 Compute the final image value:

 Move the filter

Graphics & Visualization: Principles & Algorithms Chapter 2
50

1 1

0 0

(,) (* ,) * · (,)
s s

f v

p q

I i j I i s p j s q h p q

Post-filtering Algorithm (2)

• Examples of convolution filters:

• To avoid color shifts, normalize:

• The larger the s is  better results

• Drawbacks:

 s  image generation time &  memory required

 no matter how big s becomes, the aliasing problem will remain

 not sensitive to image complexity  a lot of wasted computations

Graphics & Visualization: Principles & Algorithms Chapter 2
51

1 1

0 0

(,) 1
s s

p q

h p q

More Post-filtering Algorithms

• Adaptive post-filtering:

 Increases the sampling rate where high frequencies exist

 More complex algorithm

• Stochastic post-filtering:

 Samples the continuous image at non-uniformly spaced positions

 Aliasing effects are converted to noise (human eye ignores them)

Graphics & Visualization: Principles & Algorithms Chapter 2
52

2D Clipping Algorithms

• Avoid giving out-of-range values to a display device

• Clipping object (window): display device usually modeled as

rectangular parallelogram which defines the within-range values

• Subject: primitive of a modeled scene

• Generalization from 2D to 3D is relatively straightforward

• Subject relation to the clipping object

 Subject entirely inside: rasterize it

 Subject outside: do not rasterize

 Subject intersects the clipping object: compute the intersection with a 2D

clipping algorithm & rasterize the result

Graphics & Visualization: Principles & Algorithms Chapter 2
53

Point Clipping

• Point clipping is a trivial case:

 is point (x, y) inside the clipping object ?

• If the clipping object is a rectangular parallelogram:

 Exploit its opposite vertices (xmin, ymin), (xmax, ymax)

• Inclusion Test:

 If

 Then the point is entirely inside and must be rasterized

 Else the point is entirely outside and must NOT be rasterized

Graphics & Visualization: Principles & Algorithms Chapter 2
54

& min max min maxx x x y y y

Line Clipping - CS Algorithm

Cohen – Sutherland (CS) Algorithm

• Perform a low-cost test which decides if a line segment is

entirely inside or entirely outside the clipping window

• For each non-trivial line segment compute its intersection with

one of the lines defined by the window boundary

• Recursively apply the algorithm to both resultant line segments

Graphics & Visualization: Principles & Algorithms Chapter 2
55

Line Clipping - CS Algorithm (2)

• The plane of the clipping window is divided into 9 regions

• Each region is assigned a 4 – bit binary code

• The code bits are set according to the following rules:

 First Bit: Set 1 for y > ymax, else set 0

 Second Bit: Set 1 for y < ymin, else set 0

 Third Bit: Set 1 for x > xmax, else set 0

 Fourth Bit: Set 1 for x < xmin, else set 0

Graphics & Visualization: Principles & Algorithms Chapter 2
56

Line Clipping - CS Algorithm (3)

• Let the 4 – bit codes of the endpoints of a line segment be c1, c2

• Each endpoint is assigned a 4 – bit code according to the above

rules

• Then the low-cost inclusion tests are:

 If

 Then the line segment is entirely inside

 If

 Then the line segment is entirely outside

Graphics & Visualization: Principles & Algorithms Chapter 2
57

1 2 0000c c

1 2 0000c c

Line Clipping - CS Algorithm (4)

• Example :

• ab is entirely outside since 0001 0101 ≠ 0000

• cd is entirely inside since 0000 0000 = 0000

• For ef & gh the extent tests are not conclusive  compute the intersection

points

• Intersect ef with line y = ymin since the 2nd bit of the code is different at e & f

• Continue with the if line segment as the 2nd bit of the code of the f vertex has

value 0 (inside)

• For gh compute one of the intersection points k & continue with gk which

then computes the intersection j & recurses with a trivial inside decision for

jk

Graphics & Visualization: Principles & Algorithms Chapter 2
58

Line Clipping - CS Algorithm (5)

Algorithm:

CS_Clip (vertex p1, p2, float xmin, xmax, ymin, ymax) {

int c1, c2; vertex i ; edge e;

c1 = mkcode (p1) ; c2 = mkcode (p2) ;

if ((c 1 | c2) == 0)

 /* p1p2 is inside */

else if ((c 1 & c2) != 0)

 /* p1p2 is outside */

else {

 e= /* window line with (c 1 bit != c2 bit) */

 i = intersect_lines (e, (p1,p 2)) ;

 if outside (e, p1)

 CS_Clip(i , p2, xmin, xmax, ymin, ymax);

 else

 CS_Clip(p1, i , xmin, xmax, ymin, ymax);

 }

}

Graphics & Visualization: Principles & Algorithms Chapter 2

59

Line Clipping - Skala Algorithm

Skala Algorithm:

• Gain in efficiency over CS algorithm by classifying the vertices

of the clipping window relative to the line segment being clipped

• A binary code ci is assigned to each clipping window vertex

 vi = (xi, yi) as follows:

• 1 , l(xi, yi) ≥ 0

 ci =

 0, otherwise

where l(x, y) is the function defined by the line segment to

be clipped

• ci indicates the side of the line segment that vertex vi lies in

Graphics & Visualization: Principles & Algorithms Chapter 2
60



Line Clipping - Skala Algorithm (2)

• The codes are computed by taking the vertices in a consistent

order around the clipping window (e.g. counterclockwise)

• A clipping window edge is intersected by the line segment for

every change in the coding of the vertices (from 0 to 1 or from 1

to 0)

• A pre - computed table directly gives the clipping window edges

intersected by the line segment from the code vector [c0 ,c1 ,c2 ,c3]

and this replaces the recursive case of the CS algorithm

Graphics & Visualization: Principles & Algorithms Chapter 2
61

Line Clipping – LB Algorithm

Liang – Barsky (LB) Algorithm

• Solves the line clipping problem without using recursive calls

• Compared to CS algorithm, LB is more than 30% more efficient

• Can be easily extended to a 3D clipping object

• LB is based on the parametric equation of the line segment to be

clipped from p1(x1, y1) to p2(x2, y2):

 P = p1 + t (p2 - p1), t [0, 1]

 or

 x = x1 + t Δx , y = y1 + t Δy

 where

 Δx = x2 - x1 , Δy = y2 - y1

Graphics & Visualization: Principles & Algorithms Chapter 2
62

Line Clipping – LB Algorithm (2)

• For the part of the line segment that is inside the clipping

window:

 xmin ≤ x1 + t Δx ≤ xmax ,

 ymin ≤ y1 + t Δy ≤ ymax

 or

 -t Δx ≤ x1 - xmin ,

 t Δx ≤ xmax – x1 ,

 -t Δy ≤ y1 - ymin ,

 t Δy ≤ ymax – y1

Graphics & Visualization: Principles & Algorithms Chapter 2
63

Line Clipping – LB Algorithm (3)

• The above inequalities have the common form:

 t pi ≤ qi ,

 where

 p1 = -Δx , q1 = x1 - xmin

 p2 = Δx , q2 = xmax – x1

 p3 = -Δy , q3 = y1 - ymin

 p4 = Δy , q4 = ymax – y1

Graphics & Visualization: Principles & Algorithms Chapter 2
64

Line Clipping – LB Algorithm (4)

• Notice the following:

 If pi = 0 the line segment is parallel to the window edge i and

the clipping problem is trivial

 If pi ≠ 0 the parametric value of the point of intersection of

the line segment with the line defined by window edge i is

 ti = qi / pi

 If pi < 0 the directed line segment is incoming with respect to

window edge i

 If pi > 0 the directed line segment is outgoing with respect to

window edge i

Graphics & Visualization: Principles & Algorithms Chapter 2
65

Line Clipping – LB Algorithm (5)

• Therefore tin and tout can be computed as:

• Sets {0}, {1} clamp the starting and ending parametric values at

the end points of the line segment

• If tin ≤ tout, the values tin and tout are plugged into parametric line

equation to get the actual starting – ending points of the clipped

segment

• Otherwise there is no intersection with the clipping window

Graphics & Visualization: Principles & Algorithms Chapter 2
66

max({ | 0, :1..4} {0 })i
in i

i

q
t p i

p
min({ | 0, :1..4} {1 })i

out i

i

q
t p i

p
,

Line Clipping – LB Algorithm (6)

Graphics & Visualization: Principles & Algorithms Chapter 2
67

LB example:

• Compute: Δx = 2.5 and Δy = 2.5

• Compute:

• Compute:

• Since tin < tout compute endpoints of the

clipped line segment using the parametric equation:

1 1

2 2

3 3

4 4

p =-2.5, q =-0.5

p =2.5, q =3.5

p =-2.5, q =-0.5

p =2.5, q =3.5.

1 1 in

1 1 in

2 1 out

2 1 out

x = x + t Δx = 0.5 + 0.2 · 2.5 = 1

y = y + t Δy = 0.5 + 0.2 · 2.5 = 1

x = x + t Δx = 0.5 + 1 · 2.5 = 3

y = y + t Δy = 0.5 + 1 · 2

'

.

'

5

'

' = 3

1 1 2 2(,), (,' ' ' ' ' ')x y x y
1 2

p p

31 2 4

1 3 2 4

max({ , } {0}) 0.2 , min({ , } {1}) 1in out

qq q q
t t

p p p p

Polygon Clipping

Graphics & Visualization: Principles & Algorithms Chapter 2
68

• In 2D polygon clipping the subject and clipping object are both

polygons (subject polygon, clipping polygon)

• Why is polygon clipping important ?

• Polygon clipping cannot be regarded as multiple line clipping

Polygon Clipping – SH Algorithm

Graphics & Visualization: Principles & Algorithms Chapter 2
69

Sutherland – Hodgman (SH) Algorithm:

• Clips an arbitrary subject polygon against a convex clipping polygon

• Has m pipeline stages which correspond to the m edges of the clipping

polygon

• Stage i | i: 0…m-1 clips the subject polygon against the line defined by edge i

of the clipping polygon

• The input to stage i | i: 1…m-1 is the output of stage i-1

• Polygon is restricted to be convex

Polygon Clipping – SH Algorithm (2)

Graphics & Visualization: Principles & Algorithms Chapter 2
70

• For each stage of the SH algorithm there are the following 4

relationships between a clipping line and an object polygon edge

vkvk+1

Polygon Clipping – SH Algorithm (3)

Graphics & Visualization: Principles & Algorithms Chapter 2
71

• Example of the 1st stage of the SH algorithm:

Polygon Clipping – SH Algorithm (4)

Graphics & Visualization: Principles & Algorithms Chapter 2
72

• Algorithm:

polygon SH_Clip (polygon C, S) { /*C must be convex*/

 int i , m;

 edge e;

 polygon InPoly , OutPoly;

 m = getedgenumber(C);

 InPoly = S;

 for (i =0; i <m; i ++) {

 e = getedge(C,i);

 SH_Clip_Edge(e,InPoly,OutPoly);

 InPoly = OutPoly

 }

 return OutPoly

}

Polygon Clipping – SH Algorithm (5)

Graphics & Visualization: Principles & Algorithms Chapter 2
73

• Algorithm:
SH_Clip_Edge (edge e, polygon InPoly , OutPoly) {

 int k, n; vertex vk, vkplus1, i ;

 n = getedgenumber(InPoly);

 for (k=0; k<n; k++) {

 vk = getvertex (InPoly,k); vkplus1= getvertex (InPoly ,(k+1) mod n);

 if (inside(e, vk) and inside(e, vkplus1))

 /* Case 1 */

 putvertex (OutPoly,vkplus1)

 else if (inside(e, vk) and !inside(e, vkplus1)) {

 /* Case 2 */

 i = intersect_lines (e, (vk,vkplus1)); putvertex (OutPoly,i)

 }

 else if (!inside(e, vk) and !inside(e, vkplus1))

 /* Case 3 */

 else {

 /* Case 4 */

 i = intersect_lines (e, (vk,vkplus1)); putvertex (OutPoly,i);
 putvertex (OutPoly,vkplus1)

 }

 }

}

Polygon Clipping – SH Algorithm (6)

Graphics & Visualization: Principles & Algorithms Chapter 2
74

• The complexity of SH algorithm is O(mn) where m and n are the

numbers of vertices of the clipping and subject polygons

respectively

• No complex data structures or operations are required so the SH

algorithm is quite efficient

• The SH algorithm is appropriate for hardware implementation

since the clipping polygon, in general, is constant

Polygon Clipping – GH Algorithm

Graphics & Visualization: Principles & Algorithms Chapter 2
75

Greiner – Hormann Algorithm

• Suitable for general clipping polygons (C) and subject polygons

(S)

• The polygons can be arbitrary closed polygons, even self

intersecting

• The complexity of step 1 and 2 is O(mn) where m and n are the

numbers of vertices of the C and S polygon respectively

• The overall complexity of the GF algorithm is O(mn)

• In practice, the complex data structures used in GF algorithm

makes it less efficient than the SH algorithm

Polygon Clipping – GH Algorithm (2)

Graphics & Visualization: Principles & Algorithms Chapter 2
76

• GH algorithm is based on the winding number test for point p in

polygon P, symbolically 

• does not change so long as the topological relation of

the point p and the polygon P remains constant

• If p crosses P the is incremented or decremented

• If is odd then p is inside P, otherwise it is outside

(,)P p

(,)P p

(,)P p

(,)P p

Polygon Clipping – GH Algorithm (3)

Graphics & Visualization: Principles & Algorithms Chapter 2
77

• The 3 steps of the GH algorithm:

 1. Trace the perimeter S starting from a vertex vs0. An

 imaginary stencil toggles between on and off state every

 time the perimeter of C is crossed. Its initial state is on if

 vs0 is inside C and off otherwise. It thus computes the part of

 the perimeter of S that is inside C

 2. As step 1 but reverse the roles of S and C. The part of the

 perimeter of C that is inside S is thus computed

 3. The union of the results of steps 1 and 2 is the result of

 clipping S against C (or equivalently C against S)

Polygon Clipping – GH Algorithm (4)

Graphics & Visualization: Principles & Algorithms Chapter 2
78

• GH algorithm example:

 (a) The initial S, C polygons

 (b) After step 1 of GH

 (c) After step 2 of GH

 (d) The final result

Polygon Clipping – GH Algorithm (5)

Graphics & Visualization: Principles & Algorithms Chapter 2
79

• GH algorithm computes the intersection of the areas of 2

polygons, C S

• It easily generalizes to compute C S, C – S and S – C by

changing the initial states of the stencils for S and C

• Obviously there are 4 possible combinations of the initial state

• These generalizations are not useful for the clipping problem

