Graphics & Visualization

Chapter 2

Rasterization Algorithms
Rasterization

- 2D display devices consist of discrete grid of pixels
- **Rasterization**: converting 2D primitives into a discrete pixel representation
- The complexity of rasterization is $O(Pp)$, where P is the number of primitives and p is the number of pixels
- There are 2 main ways of viewing the grid of pixels:
 - Half – Integer Centers
 - Integer Centers (shall be used)
- **Connectedness**: which are the neighbors of a pixel?
 - 4 – connectedness
 - 8 – connectedness
- Challenges in designing a rasterization algorithm:
 - Determine the pixels that accurately describe the primitive
 - Efficiency
Rasterization (2)

- Half – Integer Centers

- 4 – Connectedness

- Integer Centers

- 8 – Connectedness
Mathematical Curves

- Two mathematical forms:
 - **Implicit Form:**

 e.g.: $f(x, y) < 0$, implies point (x, y) is 'inside' the curve
 $f(x, y) = 0$, implies point (x, y) is on the curve
 $f(x, y) > 0$, implies point (x, y) is 'outside' the curve

 - **Parametric Form:**

 - Function of a parameter $t \in [0, 1]$
 - t corresponds to arc length along the curve
 - The curve is traced as t goes from 0 to 1

 e.g.: $l(t) = (x(t), y(t))$
Mathematical Curves (2)

• Examples:
 - **Implicit Form:**
 - **line:** \(l(x, y) \equiv ax + by + c = 0 \)
 where \(a, b, c \) : line coefficients
 - if \(l(x, y) = 0 \) then point \((x, y) \) is on the curve
 - else if \(l(x, y) < 0 \) then point \((x, y) \) is on one half-plane
 - else if \(l(x, y) > 0 \) then point \((x, y) \) is on the other half-plane
 - **circle:** \(c(x, y) \equiv (x - x_c)^2 + (y - y_c)^2 - r^2 = 0 \)
 where \((x_c, y_c) \) : the center of the circle & \(r \) : circle’s radius
 - if \(c(x, y) = 0 \) then point \((x, y) \) is on the circle
 - else if \(c(x, y) < 0 \) then point \((x, y) \) is inside the circle
 - else if \(c(x, y) > 0 \) then point \((x, y) \) is outside the circle
Examples:

- **Parametric Form:**
 - **line:** \(l(t) = (x(t), y(t)) \)

 where \(x(t) = x_1 + t (x_2 - x_1) \),

 \(y(t) = y_1 + t (y_2 - y_1) \),

 \(t \in [0,1] \)

 - **circle:** \(c(t) = (x(t), y(t)) \)

 where \(x(t) = x_c + r \cos(2\pi t) \),

 \(y(t) = y_c + r \sin(2\pi t), \)

 \(t \in [0,1] \)
Finite Differences

- Functions that define primitives need to be evaluated on the pixel grid for each pixel ⇒ wasteful
- Cut this cost by taking advantage of finite differences
- Forward differences (fd):
 - First (fd): \(\delta f_i = f_{i+1} - f_i \)
 - Second (fd): \(\delta^2 f_i = \delta f_{i+1} - \delta f_i \)
 - \(k \)th (fd): \(\delta^k f_i = \delta^{k-1} f_{i+1} - \delta^{k-1} f_i \)
- Implicit functions can be used to decide if the pixel belongs to the primitive
 e.g.: pixel\((x, y)\) is included if \(|f(x, y)| < e \),
 where \(e \): related to the line width
Finite Differences (2)

- Examples:
 - Evaluation of the **line** function incrementally:
 - from pixel \((x, y)\) to pixel \((x+1, y)\)
 - Calculation of the forward differences of the implicit line equation in the \(x\) direction from pixel \(x\) to pixel \(x+1\):
 \[
 \delta_x l(x, y) = l(x + 1, y) - l(x, y) = a
 \]
 Compute \(l(x, y) + \delta_x l(x, y) = l(x, y) + a\)
 - from pixel \((x, y)\) to pixel \((x+1, y)\)
 - Calculation of the forward differences of the implicit line equation in the \(y\) direction from pixel \(y\) to pixel \(y+1\):
 \[
 \delta_y l(x, y) = l(x, y + 1) - l(x, y) = b
 \]
 Compute \(l(x, y) + \delta_y l(x, y) = l(x, y) + b\)
Finite Differences (3)

- Examples:
 - Evaluation of the circle function incrementally:
 \[\text{from pixel } (x, y) \text{ to pixel } (x+1, y) \]
 Calculation of the forward differences of the implicit circle equation.
 Since it has degree 2 there are two forward differences in the x direction from pixel x to pixel x+1:
 \[
 \delta_x c(x, y) = c(x+1, y) - c(x, y) = 2(x - x_c) + 1 \\
 \delta_x^2 c(x, y) = \delta_x c(x+1, y) - \delta_x c(x, y) = 2
 \]
 Compute \[\delta_x c(x, y) = \delta_x c(x-1, y) + \delta_x^2 c(x, y) \]
 \[c(x+1, y) = c(x, y) + \delta_x c(x, y) \]
 \[\text{from pixel } (x, y) \text{ to pixel } (x, y+1): \text{ similar by adding } \delta_y c(x, y) \text{ and } \delta_y^2 c(x, y) \]
Line Rasterization

- Desired qualities of a line rasterization algorithm:
 - Selection of the nearest pixels to the mathematical path of the line
 - Constant line width, independent of the slope of the line
 - No gaps
 - High efficiency

The 8 octants with an example line in the first octant
Line Rasterization Algorithm 1

- Draw a line from pixel \(p_s = (x_s, y_s) \) to pixel \(p_e = (x_e, y_e) \) in the first octant

- Slope of the line: \(s = \frac{y_e - y_s}{x_e - x_s} \), \(y = y_s + \text{round}(s \cdot (x - x_s)) \), \(x = x_s, \ldots, x_e \)

Algorithm:

```c
line1 ( int xs, int ys, int xe, int ye, colour c ) {
    float s; int x, y;
    s = (ye - ys) / (xe - xs); (x, y) = (xs, ys);
    while (x <= xe) {
        setpixel (x, y, c);
        x = x + 1;
        y = ys + round(s * (x - xs));
    }
}
```
• Using \texttt{line1} algorithm in the first and second octants:
Line Rasterization Algorithm 2

- Avoid rounding operation by splitting y value into an integer and a float part e
- Compute its value incrementally

Algorithm:

```c
line2 ( int xs, int ys, int xe, int ye, colour c ) {
    float s, e; int x, y;
    e = 0;    s = (ye - ys) / (xe - xs);    (x, y) = (xs, ys);
    while (x <= xe) {
        /* assert -1/2 <= e < 1/2 */
        setpixel(x, y, c);
        x = x + 1;
        e = e + s;
        if (e >= 1/2) {
            y = y + 1;
            e = e - 1;
        }
    }
}
```
Line Rasterization Algorithm 2 (2)

- Algorithm line2 resembles the leap year calculation

- The slope is added to the \(e \) variable at each iteration until it makes up more than half a unit & then the line leaps up by 1.
- The integer \(y \) variable is incremented and \(e \) is correspondingly reduced, so that the sum of the 2 variables is unchanged.

- Similarly, the year has approximately 365.25 days but calendars are designed with an integer number of days.
- We add a day every 4 years to make up for the error being accumulated.
Bresenham Line Algorithm

- Replace the floating point variables in line2 by integers
- Multiplying the leap decision variables by $dx = x_e - x_s$ makes s and e integers
- The leap decision becomes $e \geq \left\lfloor \frac{dx}{2} \right\rfloor$ because e is integer
- $\left\lfloor \frac{dx}{2} \right\rfloor$ can be computed by a numerical shift
- For more efficiency replace the test $e \geq \left\lfloor \frac{dx}{2} \right\rfloor$ by $e \geq 0$ using

 an initial subtraction of $\left\lfloor \frac{dx}{2} \right\rfloor$ from e
Bresenham Line Algorithm (2)

- Floating point variables are replaced by integers

Algorithm

```c
line3 ( int xs, int ys, int xe, int ye, colour c ) {
    int x, y, e, dx, dy;
    e = - (dx >> 1); dx = (xe - xs); dy=(ye - ys); (x, y)=(xs, ys);
    while (x <= xe) {
        /* assert -dx <= e < 0 */
        setpixel(x, y, c);
        x = x + 1;
        e = e + dy;
        if (e >= 0) {
            y = y + 1;
            e = e - dx;
        }
    }
}
```
Bresenham Line Algorithm (3)

- Suitable for lines in the first octant
- Changes for other octants according to the following table

<table>
<thead>
<tr>
<th>Octant</th>
<th>Major Axis</th>
<th>Minor Axis Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>x</td>
<td>increasing</td>
</tr>
<tr>
<td>2</td>
<td>y</td>
<td>increasing</td>
</tr>
<tr>
<td>3</td>
<td>y</td>
<td>decreasing</td>
</tr>
<tr>
<td>4</td>
<td>x</td>
<td>increasing</td>
</tr>
<tr>
<td>5</td>
<td>x</td>
<td>decreasing</td>
</tr>
<tr>
<td>6</td>
<td>y</td>
<td>decreasing</td>
</tr>
<tr>
<td>7</td>
<td>y</td>
<td>increasing</td>
</tr>
<tr>
<td>8</td>
<td>x</td>
<td>decreasing</td>
</tr>
</tbody>
</table>

- Meets the requirements of a good line rasterization algorithm
Circle Rasterization

- Circles possess 8–way symmetry
- Compute the pixels of one octant
- Pixels of other octants are derived using the symmetry
Circle Rasterization Algorithm

• The following algorithm exploits 8-way symmetry

Algorithm:

```c
set8pixels ( int x, y, colour c ) {
    setpixel(x, y, c);
    setpixel(y, x, c);
    setpixel(y, -x, c);
    setpixel(x, -y, c);
    setpixel(-x, -y, c);
    setpixel(-y, -x, c);
    setpixel(-y, x, c);
    setpixel(-x, y, c);
}
```
Bresenham Circle Algorithm

- The radius of the circle is r
- The center of the circle is pixel $(0, 1)$
- The algorithm starts with pixel $(0, r)$
- It draws a circular arc in the second octant
- Coordinate x is incremented at every step
- If the value of the circle function becomes non-negative (pixel not inside the circle), y is decremented
To center the selected pixels on the circle use a circle function which is displaced by half a pixel upwards; the circle center becomes \((0, \frac{1}{2})\)

\[
c(x, y) = x^2 + (y - \frac{1}{2})^2 - r^2 = 0
\]

Initialize the error variable to:

\[
c(0, r) = (r - \frac{1}{2})^2 - r^2 = \frac{1}{4} - r
\]

Since error is an integer variable the \(\frac{1}{4}\) can be dropped

\(e\) keeps the value of the implicit circle function

For the incremental evaluation of \(e\) use the finite differences of that function for the 2 possible steps of the algorithm

\[
c(x+1, y) - c(x, y) = (x+1)^2 - x^2 = 2x + 1
\]

\[
c(x, y-1) - c(x, y) = (y-\frac{3}{2})^2 - (y-\frac{1}{2})^2 = -2y + 2
\]
Algorithm:

circle (int r, colour c) {
 int x, y, e;
 x = 0; y = r; e = - r;
 while (x <= y) {
 /* assert e == x^2 + (y - 1/2)^2 - r^2 */
 set8pixels(x, y, c);
 e = e + 2 * x + 1;
 x = x + 1;
 if (e >= 0) {
 e = e - 2 * y + 2;
 y = y - 1;
 }
 }
}
Point in Polygon Tests

• Polygon: \(\text{n vertices (}v_0, \ldots, v_{n-1}\text{)}\) \(\text{form a closed curve}
 \begin{align*}
 \text{n edges} \\
 v_0, v_1, \ldots, v_{n-1}, v_0
 \end{align*}\)

• **Jordan Curve Theorem:** A continuous simple closed curve in the plane separates the plane into 2 regions. The ‘inside’ and the ‘outside’

• For efficient rasterization we need to know if a pixel \(p\) is inside a polygon \(P\). There are two types of inclusion tests:
 - Parity test
 - Winding number
Point in Polygon Tests (2)

• Parity Test:
 - Draw a half line from pixel p in any direction
 - Count the number of intersections of the line with the polygon P
 - If \(\# \text{intersections} == \text{odd number} \) then p is inside P
 - Otherwise p is outside P
Point in Polygon Tests (3)

- **Winding Number Test:**
 - $\omega(P, p)$ counts the # of revolutions completed by a ray from p that traces P

 \[\omega(P, p) = \frac{1}{2\pi} \int d\varphi \]

 - For every counterclockwise revolution $\omega(P, p) ++$
 - For every clockwise revolution $\omega(P, p)--$
 - If $\omega(P, p)$ is odd then p is inside P
 - Otherwise p is outside P
Point in Polygon Tests (4)

- The winding number test for point in polygon:

- Simple computation of the winding number:

- The sign test for point in convex polygon:

\[
\text{sign}(l_0(p)) = \text{sign}(l_1(p)) = \ldots = \text{sign}(l_{n-1}(p))
\]
Polygon Rasterization

- **Basic Polygon Rasterization Algorithm:**
 - Based on the parity test
 - Steps:
 1. Compute intersections $I(x, y)$ of every edge with all the scanlines it intersects & store them in a list
 2. Sort the intersections by (y, x)
 3. Extract spans from the list & set the pixels between them
Singularities

• Basic Polygon Rasterization Algorithm:
 ■ inefficient due to the cost of intersection computations

• Problem:
 ■ if a polygon vertex falls exactly on a scanline:
 count 2, 1 or 0 intersections?

• Solutions:
 ■ regard edge as closed on the vertex with min y and open on
 the vertex with max y
 ■ ignore horizontal edges
Singularities (2)

- Rule for Treating Intersection Singularities

- Effect of Singularities Rule on Singularities

![Diagram showing the rule for treating intersection singularities and the effect of the singularities rule on singularities.](image-url)
Scanline Polygon Rasterization Algorithm

- Takes advantage of scanline coherence & edge coherence
- Uses an Edge Table (ET) and an Active Edge Table (AET)

Algorithm:

1. Construct the polygon ET, containing the maximum y, the min x and the inverse slope of each edge \((y_{\text{max}}, x_{\text{min}}, 1/s)\). The record of an edge is inserted in the bucket of its minimum y coordinate.

2. For every scanline y that intersects the polygon in an upward sweep
 (a) Update the AET edge intersections for the current scanline: \(x = x + 1/s\).
 (b) Insert edges from y bucket of ET into AET.
 (c) Remove edges from AET whose \(y_{\text{max}} \leq y\).
 (d) Re-sort AET on x.
 (e) Extract spans from the AET and set their pixels.
Scanline Polygon Rasterization Algorithm (2)

- A polygon and its Edge Table (ET)

Example states of the AET

\[
\begin{align*}
y &= 4 & 8 & \frac{13}{5} & 3/5 & \quad 8 & [4] & 1/4 & \\
y &= 3 & 8 & 2 & 3/5 & \quad 4 & [17/4] & -1/4 & \\
y &= 2 & 3 & \frac{3}{2} & -1 & \quad 4 & [9/2] & -1/4 & \\
\end{align*}
\]
The edges that populate the AET change at polygon vertices according to the following figure:

- remove
- insert
- replace

Updating the AET
Critical points Polygon Rasterization Algorithm

- Uses the local minima (critical points) explicitly in order to make ET redundant and to avoid its expensive creation

- An example polygon (above) and the contents of the AET for 3 scanlines (below)

\[
\begin{align*}
\text{y} &= H_3 \quad 6 \quad -1 \quad x_9 \quad 6 \quad +1 \quad x_{10} \quad 8 \quad -1 \quad x_{11} \quad 3 \quad +1 \quad x_{12} \quad 3 \quad -1 \quad x_{13} \quad 1 \quad +1 \quad x_{14} \\
\text{y} &= H_2 \quad 11 \quad -1 \quad x_5 \quad 9 \quad +1 \quad x_6 \quad 9 \quad -1 \quad x_7 \quad 1 \quad +1 \quad x_8 \\
\text{y} &= H_1 \quad 12 \quad -1 \quad x_1 \quad 13 \quad +1 \quad x_2 \quad 15 \quad -1 \quad x_3 \quad 15 \quad +1 \quad x_4
\end{align*}
\]
Critical points Polygon Rasterization Algorithm

Algorithm:

1. Find and store the critical points of the polygon.
2. For every scanline \(y \) that intersects the polygon in an upward sweep
 (a) For every critical point \(c (x_c, y_c) \) \(\mid y - 1 < y_c \leq y \) track the perimeter of the polygon in both directions starting at \(c \). Tracking stops if scanline \(y \) is intersected or a local maximum is found. For every intersection with scanline \(y \) create an \(AET \) record \((v, \pm 1, x) \) containing the start vertex number \(v \) of the intersecting edge, the tracking direction along the perimeter of the polygon \((-1\text{ or }+1\text{ depending on whether it is clockwise or counterclockwise})\) and the \(x \) coordinate of the point of intersection.
 (b) For every \(AET \) record that pre-existed step (a), track the polygon perimeter in the direction stored within it. If an intersection with scanline \(y \) is found, the record’s start vertex number and intersection \(x \) coordinate are updated. If a local maximum is found the record is deleted from the \(AET \).
 (c) Sort the \(AET \) on \(x \) if necessary.
 (d) Extract spans from the \(AET \) and set their pixels.
Triangle Rasterization Algorithm

- **Triangle**: simplest, planar, convex polygon
- Determine the pixels covered by a triangle → perform an inside test on all the pixels of the triangle’s bounding box
- The inside test can be the evaluation of the 3 line functions defined by the triangle edges
- For each pixel \(p \) of the bounding box, if the 3 line functions give the same sign, then \(p \) is inside the triangle, otherwise outside
- For efficiency, the line functions are incrementally evaluated using their forward differences
Algorithm:
triangle1 (vertex v0, v1, v2, colour c) {
 line l0, l1, l2;
 float e0, e1, e2, e0t, elt, e2t;
 /* Compute the line coefficients (a,b,c) from the vertices */
 mkline(v0, v1, &l0); mkline(v1, v2, &l1); mkline(v2, v0, &l2);
 /* Compute bounding box of triangle */
 bb_xmin = min(v0.x, v1.x, v2.x);
 bb_xmax = max(v0.x, v1.x, v2.x);
 bb_ymin = min(v0.y, v1.y, v2.y);
 bb_ymax = max(v0.y, v1.y, v2.y);
 /* Evaluate linear functions at (bb_xmin, bb_ymin) */
 e0 = l0.a * bb_xmin + l0.b * bb_ymin + l0.c;
 e1 = l1.a * bb_xmin + l1.b * bb_ymin + l1.c;
 e2 = l2.a * bb_xmin + l2.b * bb_ymin + l2.c;
Algorithm (continued):

```c
for (y=bb_ymin; y<=bb_ymax; y++) {
    e0t = e0; elt = e1; e2t = e2;
    for (x=bb_xmin; x<=bb_xmax; x++) {
        if (sign(e0)==sign(e1)==sign(e2))
            setpixel(x, y, c);
        e0 = e0 + l0.a;
        e1 = e1 + l1.a;
        e2 = e2 + l2.a;
    }
    e0 = e0t + l0.b;
    e1 = elt + l1.b;
    e2 = e2t + l2.b;
}
```
Triangle Rasterization Algorithm (4)

• If the bounding box is large, triangle1 is wasteful
• Another approach: **Edge Walking**
 - 3 Bresenham line rasterization algorithms are used to walk the edges of the triangle
 - Trace is done per scanline by synchronizing the line rasterizers
 - The endpoints of a span of inside pixels are computed for every scanline that intersects the triangle and the pixels of the span are set
 - Special attention to special cases
• Simplicity of the above algorithms makes them ideal for hardware implementation
Area Filling Algorithms

- A simple approach is **flood fill**

Algorithm:

```c
flood_fill ( polygon P, colour c ) {
    point s;
    draw_perimeter ( P, c );
    s = get_seed_point ( P );
    flood_fill_recur ( s, c );
}
```

```c
flood_fill_recur ( point (x,y), colour fill_colour ); {
    colour c;
    c = getpixel(x,y); /* read current pixel colour */
    if ( c != fill_colour ) {
        setpixel(x,y,fill_colour);
        flood_fill_recur((x+1,y), fill_colour );
        flood_fill_recur((x-1,y), fill_colour );
        flood_fill_recur((x,y+1), fill_colour );
        flood_fill_recur((x,y-1), fill_colour );
    }
}
```
Area Filling Algorithms (2)

- For 4 – connected areas the above 4 recursive calls are sufficient
- For 8 – connected areas 4 extra recursive calls must be added
 - `flood_fill_recur((x+1,y+1), fill_colour);`
 - `flood_fill_recur((x+1,y-1), fill_colour);`
 - `flood_fill_recur((x-1,y+1), fill_colour);`
 - `flood_fill_recur((x-1,y-1), fill_colour);`
- Basic problem its inefficiency
Perspective Correction

• The rasterization of primitives is performed in 2D screen space while the properties of primitives are associated with 3D object vertices

• The general projection transformation does not preserve ratios of distances → it is incorrect to linearly interpolate the values of properties in screen space

• **Perspective Correction** used to obtain the correct value at a projected point

• Based on the fact that projective transformations preserve cross ratios
Perspective Correction (2)

• Example:
 - Let \(\mathbf{ad} \) be a line segment and \(\mathbf{b} \) its midpoint in 3D space
 - Let \(\mathbf{a}', \mathbf{d}', \mathbf{b}' \) be the perspective projections of the points \(\mathbf{a}, \mathbf{d}, \mathbf{b} \)

\[
\begin{align*}
\frac{ac}{cd} &= \frac{a'c'}{c'd'} \\
\frac{ab}{bd} &= \frac{a'b'}{b'd'} \\
\end{align*}
\]

\[
\begin{align*}
\frac{ab}{bd} &= 1 \\
\frac{a'b'}{b'd'} &= q
\end{align*}
\]

• Heckbert provides an efficient solution to perspective correction:
 - Perspective division of a property:
 - Let \([x, y, z, w, c]^T\) be the pre-perspective coordinates of a vertex, where \(c\) is the value of a property \(\rightarrow [x/w, y/w, z/w, c/w, 1/w]^T\) are the coordinates of the projected vertex
Spatial Anti-aliasing

- The primitive rasterization algorithms represent the pixel as a point.
- Pixels are **not** mathematical points but have a small area → aliasing effects.
- Aliasing effects:
 - jagged appearance of object silhouettes
 - improperly rasterized small objects
 - incorrectly rasterized detail
Anti-aliasing Techniques

• Anti-aliasing trades intensity resolution to gain spatial resolution

2 categories of anti-aliasing techniques:

• **Pre-filtering:**
 - extract high frequencies before sampling
 - treat the pixel as a finite area
 - compute the % contribution of each primitive in the pixel area

• **Post-filtering:**
 - extract high frequencies after sampling
 - increase sampling frequency
 - results are averaged down
Pre-filtering Anti-aliasing Methods

Anti-aliased Polygon Rasterization: Catmull’s Algorithm

- Consider each pixel as a square window
- Clip all overlapping polygons
- Estimate the visible area of each polygon as a % of the pixel

A general polygon clipping algorithm is needed, such as Greiner-Horman (section 1.8.3)
Catmull’s Algorithm

Algorithm:

1. Clip all polygons against the pixel window → $P_0...P_{n-1}$: the surviving polygon pieces

2. Eliminate hidden surfaces:
 (a) order by depth polygons $P_0...P_{n-1}$
 (b) clip against the area formed by subtracting the polygons from the (remaining) pixel window in depth order → $P_0...P_{m-1}$ ($m \leq n$) the visible parts of polygons & $A_0...A_{m-1}$ their respective areas

3. Compute final pixel color: $A_0C_0 + A_1C_1 + ... + A_{m-1}C_{m-1} + A_BC_B$
 where C_i: the color of polygon I & A_B, C_B: background area & its color

- Not practically viable:
 - Extraordinary computations
 - A polygon may not have constant color in a pixel (texture)
Pre-filtering Anti-aliasing Methods (2)

Anti-aliased Line Rasterization

• Bresenham algorithm
 - uses binary decision to select the closest pixel to the mathematical path of the lines → jagged lines & polygon edges
• Lines must have certain width → modeled as thin parallelograms
 - binary decision is wrong
 - color value depends on the % of the pixel that is covered by the line
Anti-aliased Line Rasterization

- An example:
 - Line in the 1st octant with slope $s = -\frac{a}{b}$
 - 2 pixels partially covered by the line
 - Determine the portions of the triangles A_1 & A_2
 - Color of the top pixel = color of line at a portion A_2
 - Color of the bottom pixel = color of line at a portion $(1-A_1)$
 - The areas of the triangles: $A_1 = \frac{d^2}{2s}$, $A_2 = \frac{(s-d)^2}{2s}$
Post-filtering Anti-aliasing Methods

• More than 1 sample per pixel → image at a higher resolution
• The results are averaged down to the resolution of the pixel grid
• Most common technique due to its simplicity
• An example:
 ■ to create an 1024×1024 image, take 3072×3072 samples
 ◆ 9 samples per pixel (3 horizontally \times 3 vertically)
 ■ 3×3 virtual image pixels correspond to 1 final image pixel
 ■ the final pixel’s color is the average of the 9 samples
Post-filtering Algorithm

Algorithm:

1. The (continuous) image is sampled at \(s \) times the final pixel resolution (\(s \) horizontally \(\times \) \(s \) vertically) creating a virtual image \(I_u \).

2. The virtual image is low-pass filtered to eliminate the high frequencies that cause aliasing.

3. The filtered virtual image is re-sampled at the pixel resolution to produce the final image \(I_f \).

- **Use** \(s \times s \) convolution filter \(h \) instead of averaging the \(s \times s \) samples

- **Steps:**
 - Place the filter over the virtual image pixel
 - Compute the final image value:
 \[
 I_f(i, j) = \sum_{p=0}^{s-1} \sum_{q=0}^{s-1} I_v(i*s + p, j*s + q) \cdot h(p, q)
 \]
 - Move the filter
Post-filtering Algorithm (2)

- **Examples of convolution filters:**

 - To avoid color shifts, normalize:
 \[
 \sum_{p=0}^{s-1} \sum_{q=0}^{s-1} h(p, q) = 1
 \]

- **To avoid color shifts, normalize:**

 - The larger the \(s \) is \(\rightarrow \) better results

- **Drawbacks:**
 - \(\uparrow s \rightarrow \uparrow \) image generation time & \(\uparrow \) memory required
 - no matter how big \(s \) becomes, the aliasing problem will remain
 - not sensitive to image complexity \(\rightarrow \) a lot of wasted computations
More Post-filtering Algorithms

- **Adaptive post-filtering:**
 - Increases the sampling rate where high frequencies exist
 - More complex algorithm

- **Stochastic post-filtering:**
 - Samples the continuous image at non-uniformly spaced positions
 - Aliasing effects are converted to noise (human eye ignores them)

![Regular vs Stochastic Sampling](image-url)
2D Clipping Algorithms

- Avoid giving out-of-range values to a display device
- **Clipping object (window):** display device usually modeled as rectangular parallelogram which defines the within-range values
- **Subject:** primitive of a modeled scene
- Generalization from 2D to 3D is relatively straightforward
- Subject relation to the clipping object
 - Subject entirely inside: rasterize it
 - Subject outside: do not rasterize
 - Subject intersects the clipping object: compute the intersection with a 2D clipping algorithm & rasterize the result
Point Clipping

• Point clipping is a trivial case:
 ■ is point \((x, y)\) inside the clipping object?

• If the clipping object is a rectangular parallelogram:
 ■ Exploit its opposite vertices \((x_{\text{min}}, y_{\text{min}}), (x_{\text{max}}, y_{\text{max}})\)

• Inclusion Test:

 If \(x_{\text{min}} \leq x \leq x_{\text{max}}\) \& \(y_{\text{min}} \leq y \leq y_{\text{max}}\)

 Then the point is entirely inside and must be rasterized

 Else the point is entirely outside and must NOT be rasterized
Cohen – Sutherland (CS) Algorithm

• Perform a low-cost test which decides if a line segment is entirely inside or entirely outside the clipping window

• For each non-trivial line segment compute its intersection with one of the lines defined by the window boundary

• Recursively apply the algorithm to both resultant line segments
Line Clipping - CS Algorithm (2)

- The plane of the clipping window is divided into 9 regions.
- Each region is assigned a 4-bit binary code.
- The code bits are set according to the following rules:
 - **First Bit**: Set 1 for \(y > y_{\text{max}} \), else set 0.
 - **Second Bit**: Set 1 for \(y < y_{\text{min}} \), else set 0.
 - **Third Bit**: Set 1 for \(x > x_{\text{max}} \), else set 0.
 - **Fourth Bit**: Set 1 for \(x < x_{\text{min}} \), else set 0.

![Diagram of clipping window and code mapping](image)
Line Clipping - CS Algorithm (3)

- Let the 4-bit codes of the endpoints of a line segment be c_1, c_2
- Each endpoint is assigned a 4-bit code according to the above rules
- Then the low-cost inclusion tests are:
 - If $c_1 \lor c_2 = 0000$
 - Then the line segment is entirely inside
 - If $c_1 \land c_2 \neq 0000$
 - Then the line segment is entirely outside
Line Clipping - CS Algorithm (4)

• Example:

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Code</th>
<th>Endpoint</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0001</td>
<td>e</td>
<td>0100</td>
</tr>
<tr>
<td>b</td>
<td>0101</td>
<td>f</td>
<td>0010</td>
</tr>
<tr>
<td>c</td>
<td>0000</td>
<td>g</td>
<td>0001</td>
</tr>
<tr>
<td>d</td>
<td>0000</td>
<td>h</td>
<td>1010</td>
</tr>
</tbody>
</table>

• \textbf{ab} is entirely outside since 0001 \land 0101 \neq 0000
• \textbf{cd} is entirely inside since 0000 \lor 0000 = 0000
• For \textbf{ef} & \textbf{gh} the extent tests are not conclusive \Rightarrow compute the intersection points
• Intersect \textbf{ef} with line \(y = y_{\min}\) since the 2nd bit of the code is different at \textbf{e} & \textbf{f}
• Continue with the \textbf{if} line segment as the 2nd bit of the code of the \textbf{f} vertex has value 0 (inside)
• For \textbf{gh} compute one of the intersection points \textbf{k} & continue with \textbf{gk} which then computes the intersection \textbf{j} & recurses with a trivial inside decision for \textbf{jk}
Algorithm:

CS_Clip (vertex p1, p2, float xmin, xmax, ymin, ymax) {
 int c1, c2; vertex i; edge e;
 c1 = mkcode (p1); c2 = mkcode (p2);
 if ((c1 | c2) == 0)
 /* p1p2 is inside */
 else if ((c1 & c2) != 0)
 /* p1p2 is outside */
 else {
 e = /* window line with (c1 bit != c2 bit) */
 i = intersect_lines (e, (p1,p2));
 if outside (e, p1)
 CS_Clip(i, p2, xmin, xmax, ymin, ymax);
 else
 CS_Clip(p1, i, xmin, xmax, ymin, ymax);
 }
}
Line Clipping - Skala Algorithm

Skala Algorithm:

- Gain in efficiency over CS algorithm by classifying the vertices of the clipping window relative to the line segment being clipped.
- A binary code c_i is assigned to each clipping window vertex $v_i = (x_i, y_i)$ as follows:

$$c_i = \begin{cases}
1, & l(x_i, y_i) \geq 0 \\
0, & \text{otherwise}
\end{cases}$$

where $l(x, y)$ is the function defined by the line segment to be clipped.

- c_i indicates the side of the line segment that vertex v_i lies in.
Line Clipping - Skala Algorithm (2)

- The codes are computed by taking the vertices in a consistent order around the clipping window (e.g. counterclockwise)

- A clipping window edge is intersected by the line segment for every change in the coding of the vertices (from 0 to 1 or from 1 to 0)

- A pre-computed table directly gives the clipping window edges intersected by the line segment from the code vector \([c_0, c_1, c_2, c_3]\) and this replaces the recursive case of the CS algorithm
Line Clipping – LB Algorithm

Liang – Barsky (LB) Algorithm

• Solves the line clipping problem without using recursive calls
• Compared to CS algorithm, LB is more than 30% more efficient
• Can be easily extended to a 3D clipping object
• LB is based on the parametric equation of the line segment to be clipped from \(p_1(x_1, y_1) \) to \(p_2(x_2, y_2) \):

\[
P = p_1 + t (p_2 - p_1), \quad t \in [0, 1]
\]

or

\[
x = x_1 + t \Delta x, \quad y = y_1 + t \Delta y
\]

where

\[
\Delta x = x_2 - x_1, \quad \Delta y = y_2 - y_1
\]
Line Clipping – LB Algorithm (2)

• For the part of the line segment that is inside the clipping window:

\[
\begin{align*}
 x_{\text{min}} & \leq x_1 + t \Delta x \leq x_{\text{max}} , \\
 y_{\text{min}} & \leq y_1 + t \Delta y \leq y_{\text{max}}
\end{align*}
\]

or

\[
\begin{align*}
 -t \Delta x & \leq x_1 - x_{\text{min}} , \\
 t \Delta x & \leq x_{\text{max}} - x_1 , \\
 -t \Delta y & \leq y_1 - y_{\text{min}} , \\
 t \Delta y & \leq y_{\text{max}} - y_1
\end{align*}
\]
The above inequalities have the common form:
\[t p_i \leq q_i , \]
where
\[p_1 = -\Delta x , \quad q_1 = x_1 - x_{\text{min}} \]
\[p_2 = \Delta x , \quad q_2 = x_{\text{max}} - x_1 \]
\[p_3 = -\Delta y , \quad q_3 = y_1 - y_{\text{min}} \]
\[p_4 = \Delta y , \quad q_4 = y_{\text{max}} - y_1 \]
• Notice the following:
 - If $p_i = 0$ the line segment is parallel to the window edge i and the clipping problem is trivial
 - If $p_i \neq 0$ the parametric value of the point of intersection of the line segment with the line defined by window edge i is $t_i = q_i / p_i$
 - If $p_i < 0$ the directed line segment is incoming with respect to window edge i
 - If $p_i > 0$ the directed line segment is outgoing with respect to window edge i
Line Clipping – LB Algorithm (5)

- Therefore \(t_{in} \) and \(t_{out} \) can be computed as:

\[
t_{in} = \max\left(\left\{ \frac{q_i}{p_i} \mid p_i < 0, \ i:1..4\right\} \cup \{0\}\right), \quad t_{out} = \min\left(\left\{ \frac{q_i}{p_i} \mid p_i > 0, \ i:1..4\right\} \cup \{1\}\right)
\]

- Sets \{0\}, \{1\} clamp the starting and ending parametric values at the end points of the line segment.

- If \(t_{in} \leq t_{out} \), the values \(t_{in} \) and \(t_{out} \) are plugged into parametric line equation to get the actual starting – ending points of the clipped segment.

- Otherwise there is no intersection with the clipping window.
LB example:

- Compute: $\Delta x = 2.5$ and $\Delta y = 2.5$
- Compute: $p_1 = -2.5$, $q_1 = -0.5$
 $p_2 = 2.5$, $q_2 = 3.5$
 $p_3 = -2.5$, $q_3 = -0.5$
 $p_4 = 2.5$, $q_4 = 3.5$.
- Compute: $t_{in} = \max(\{\frac{q_1}{p_1}, \frac{q_3}{p_3}\} \cup \{0\}) = 0.2$, $t_{out} = \min(\{\frac{q_2}{p_2}, \frac{q_4}{p_4}\} \cup \{1\}) = 1$
- Since $t_{in} < t_{out}$ compute endpoints $p_1'(x_1', y_1')$, $p_2'(x_2', y_2')$ of the clipped line segment using the parametric equation:

\[
\begin{align*}
x_1' &= x_1 + t_{in} \Delta x = 0.5 + 0.2 \cdot 2.5 = 1 \\
y_1' &= y_1 + t_{in} \Delta y = 0.5 + 0.2 \cdot 2.5 = 1 \\
x_2' &= x_1 + t_{out} \Delta x = 0.5 + 1 \cdot 2.5 = 3 \\
y_2' &= y_1 + t_{out} \Delta y = 0.5 + 1 \cdot 2.5 = 3
\end{align*}
\]
Polygon Clipping

- In 2D polygon clipping the subject and clipping object are both polygons (subject polygon, clipping polygon)
- Why is polygon clipping important?

- Polygon clipping cannot be regarded as multiple line clipping
Sutherland – Hodgman (SH) Algorithm:

- Clips an arbitrary subject polygon against a convex clipping polygon
- Has m pipeline stages which correspond to the m edges of the clipping polygon
- Stage $i \mid i: 0…m-1$ clips the subject polygon against the line defined by edge i of the clipping polygon
- The input to stage $i \mid i: 1…m-1$ is the output of stage $i-1$
- Polygon is restricted to be convex
For each stage of the SH algorithm there are the following 4 relationships between a clipping line and an object polygon edge v_kv_{k+1}.

- **Case 1:** 1 output
 - Inside
 - Output vertex

- **Case 2:** 1 output
 - Outside

- **Case 3:** 0 outputs
 - Inside
 - Clipping line

- **Case 4:** 2 outputs
 - Outside
 - Clipping line

- *output vertex*
Example of the 1st stage of the SH algorithm:

<table>
<thead>
<tr>
<th>v_k</th>
<th>v_{k+1}</th>
<th>Case</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_0</td>
<td>v_1</td>
<td>2</td>
<td>i_1</td>
</tr>
<tr>
<td>v_1</td>
<td>v_2</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>v_2</td>
<td>v_3</td>
<td>4</td>
<td>i_2, v_3</td>
</tr>
<tr>
<td>v_3</td>
<td>v_4</td>
<td>2</td>
<td>i_3</td>
</tr>
<tr>
<td>v_4</td>
<td>v_5</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>v_5</td>
<td>v_6</td>
<td>4</td>
<td>i_4, v_6</td>
</tr>
<tr>
<td>v_6</td>
<td>v_0</td>
<td>1</td>
<td>v_0</td>
</tr>
</tbody>
</table>
• **Algorithm:**

```c
poly SH_Clip (polygon C, S) { /*C must be convex*/
    int i, m;
    edge e;
    polygon InPoly, OutPoly;
    m = getedgenumber(C);
    InPoly = S;
    for (i=0; i<m; i++) {
        e = getedge(C, i);
        SH_Clip_Edge(e, InPoly, OutPoly);
        InPoly = OutPoly
    }
    return OutPoly
}
```
Polygon Clipping – SH Algorithm (5)

- **Algorithm:**

```c
SH_Clip_Edge ( edge e, polygon InPoly, OutPoly ) {
    int k, n; vertex vk, vkplus1, i;
    n = getedgenumber(InPoly);
    for (k=0; k<n; k++) {
        vk = getvertex(InPoly,k); vkplus1=getvertex(InPoly,(k+1) mod n);
        if (inside(e, vk) and inside(e, vkplus1))
            /* Case 1 */
            putvertex(OutPoly,vkplus1)
        else if (inside(e, vk) and !inside(e, vkplus1)) {
            /* Case 2 */
            i = intersect_lines(e, (vk,vkplus1)); putvertex(OutPoly,i)
        } else if (!inside(e, vk) and !inside(e, vkplus1))
            /* Case 3 */
        else {
            /* Case 4 */
            i = intersect_lines(e, (vk,vkplus1)); putvertex(OutPoly,i);
            putvertex(OutPoly,vkplus1)
        }
    }
}
```
Polygon Clipping – SH Algorithm (6)

- The complexity of SH algorithm is $O(mn)$ where m and n are the numbers of vertices of the clipping and subject polygons respectively.

- No complex data structures or operations are required so the SH algorithm is quite efficient.

- The SH algorithm is appropriate for hardware implementation since the clipping polygon, in general, is constant.
Greiner – Hormann Algorithm

- Suitable for general clipping polygons (C) and subject polygons (S)
- The polygons can be arbitrary closed polygons, even self intersecting
- The complexity of step 1 and 2 is $O(mn)$ where m and n are the numbers of vertices of the C and S polygon respectively
- The overall complexity of the GF algorithm is $O(mn)$
- In practice, the complex data structures used in GF algorithm makes it less efficient than the SH algorithm
Polygon Clipping – GH Algorithm (2)

- GH algorithm is based on the winding number test for point p in polygon P, symbolically $\mapsto \omega(P, p)$

- $\omega(P, p)$ does not change so long as the topological relation of the point p and the polygon P remains constant

- If p crosses P the $\omega(P, p)$ is incremented or decremented

- If $\omega(P, p)$ is odd then p is inside P, otherwise it is outside
The 3 steps of the GH algorithm:

1. Trace the perimeter S starting from a vertex v_{s0}. An imaginary stencil toggles between on and off state every time the perimeter of C is crossed. Its initial state is on if v_{s0} is inside C and off otherwise. It thus computes the part of the perimeter of S that is inside C.

2. As step 1 but reverse the roles of S and C. The part of the perimeter of C that is inside S is thus computed.

3. The union of the results of steps 1 and 2 is the result of clipping S against C (or equivalently C against S).
Polygon Clipping – GH Algorithm (4)

- GH algorithm example:
 (a) The initial S, C polygons
 (b) After step 1 of GH
 (c) After step 2 of GH
 (d) The final result
Polygon Clipping – GH Algorithm (5)

- GH algorithm computes the intersection of the areas of 2 polygons, $C \cap S$
- It easily generalizes to compute $C \cup S$, $C - S$ and $S - C$ by changing the initial states of the stencils for S and C
- Obviously there are 4 possible combinations of the initial state
- These generalizations are not useful for the clipping problem